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Abstract

Feature Selection is central to modern data science, from exploratory data analysis to
predictive model-building. The “stability” of a feature selection algorithm refers to the
robustness of its feature preferences, with respect to data sampling and to its stochastic
nature. An algorithm is ‘unstable’ if a small change in data leads to large changes in
the chosen feature subset. Whilst the idea is simple, quantifying this has proven more
challenging—we note numerous proposals in the literature, each with different motivation
and justification. We present a rigorous statistical treatment for this issue. In particular,
with this work we consolidate the literature and provide (1) a deeper understanding of
existing work based on a small set of properties, and (2) a clearly justified statistical
approach with several novel benefits. This approach serves to identify a stability measure
obeying all desirable properties, and (for the first time in the literature) allowing confidence
intervals and hypothesis tests on the stability, enabling rigorous experimental comparison
of feature selection algorithms.
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1. Introduction

High-dimensional data sets are the norm in data-intensive scientific domains. In application
areas from bioinformatics to business analytics, it is common to collect many more measure-
ments (“features” or “variables”) than a study is able to easily cope with. This is a natural
consequence of exploratory data analysis, but brings challenges of computational overhead,
model interpretability and overfitting. Modern statistical regularisation methods can often
control the model fit, but if the task is to identify meaningful subsets of features, there
is a jungle of heuristics and domain-specific feature selection methods from which to pick,
surveyed in several previous works, e.g. Guyon and Elisseeff (2003); Brown et al. (2012).
Many authors have addressed the question of how sensitive each feature selection method
is, with respect to small changes in the training data. If, with a different sample from the
same training data, the chosen subset of features changes radically, then it is regarded as
being an unstable procedure. Conversely, if the feature subset is almost static with respect
to data changes, it is a stable procedure. Whilst the intuition here is clear, there is to date
no single agreed measure to quantify stability, and numerous proposals in the literature.
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The first published work to consider the stability of feature selection procedures was
Kalousis et al. (2005), with extended experimental results published later as Kalousis et al.
(2007). A slightly earlier technical report (Dunne et al., 2002) examined the idea in the
limited scope of wrapper-based feature selection, but Kalousis et al. (2005) were the first to
discuss stability in depth, independent of the particular feature selection algorithm. They
defined stability as follows:

“We define the stability of a feature selection algorithm as the robustness of
the feature preferences it produces to differences in training sets drawn from the
same generating distribution P(X,C). Stability quantifies how different training
sets affect the feature preferences.” (Kalousis et al., 2005, pg 2)

Kalousis et al. (2005) provided an excellent review of the issues, which we will not repeat
here. One important point is how the feature preferences are represented—as a ranking,
a weighting or a subset. Since any ranking or weighting can be thresholded to obtain a
subset (which is often the case), the scope of this particular article is the stability of feature
subset selection, with the other representations left for future work. The seminal work of
Kalousis was followed by a flurry of publications in application areas where stability turns
out to be critical, such as microarray classification (Davis et al., 2006), molecular profiling
(Jurman et al., 2008) and linguistics (Wichmann and Kamholz, 2008). But, perhaps more
interesting for this paper, there was also a flurry of methodological papers, addressing how
best to quantify stability.

1.1 The Problem: How to Quantify and Estimate Stability

The measurement of stability is important, as it addresses a fundamental question in data
science—how much can we trust an algorithm? If tiny changes to initial conditions result
in significantly different conclusions, perhaps we should not trust the output as reflective
of the true underlying mechanism. This is important, not just for pure interest’s sake in
machine learning, but a true interdisciplinary challenge. In biomedical fields, this is a proxy
for reproducible research (Lee et al., 2012) indicating that whatever biological features the
algorithm has found are likely to be a data artefact, not a real clinical signal worth pursuing
with further resources. Jurman et al. (2008) argue that having a stable selected gene set is
equally important as their predictive power, while Goh and Wong (2016, pg 1) state:

“Identifying reproducible yet relevant features is a major challenge in biological
research.[...]We recommend augmenting statistical feature selection methods with
concurrent analysis on stability and reproducibility to improve the quality of the
selected features prior to experimental validation.”

This is the intuitive concept and motivation to study stability. However intuitive, precisely
quantifying it has proven somewhat challenging. In a literature search, conducted in early
2018, we identified at least 15 different measures used to quantify the stability of feature
selection algorithms (Dunne et al., 2002; Shi et al., 2006; Davis et al., 2006; Kalousis et al.,
2007; Kŕızek et al., 2007; Kuncheva, 2007; Yu et al., 2008; Zucknick et al., 2008; Zhang et al.,
2009; Lustgarten et al., 2009; Somol and Novovičová, 2010; Guzmán-Mart́ınez and Alaiz-
Rodŕıguez, 2011; Wald et al., 2013; Lausser et al., 2013; Goh and Wong, 2016). Most of these
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were justified and evaluated, though there has been little cross-comparison. The question
arises: which should we trust, in which situation? If we do not understand the properties
of these measures, it leads to a questionable interpretation of the stability values obtained,
and questionable research in general. As acknowledged by Boulesteix and Slawski (2009),
a multiplicity1 of methods for stability assessment may lead to publication bias—in that
researchers may (hopefully unintentionally) be drawn toward the metric that reports their
feature selection algorithm as more stable. Furthermore, rarely do authors acknowledge
that the stability value obtained is an estimate of a true stability, based on the number
of feature sets sampled. Any measure is an estimator of an underlying random variable—
therefore we should be able to discuss statistical concepts such as the population parameter
being estimated and the convergence properties of the estimator. In this paper, we provide
such an estimator and a theoretical analysis of its properties.

1.2 Our Approach to the Problem

Our approach to this problem is to propose a small set of properties, describing desirable
behaviours from a stability measure. We will argue that the properties are generic enough
to be desirable in all reasonable feature selection scenarios, and that they are critical for
useful comparison and interpretation of stability values. We proceed to prove whether the 5
properties hold for each of 15 measures already proposed in the literature, and find no mea-
sure satisfying all. We then propose a novel measure for which all properties provably hold,
in Section 4. The proposed measure has several desirable characteristics which distinguish
it from previous proposals:

1. It is based on 5 well-defined properties (Section 3) which we will argue are essential
requirements for a stability measure in most (if not all) feature selection scenarios.

2. It has a clean statistical interpretation in terms of the sample variance of a set of
Bernoulli variables. The clean interpretation allows us to derive a set of tools for
practitioners including

• confidence intervals for the true stability;

• a hypothesis test to check if the true stability is above a user-defined threshold;

• a hypothesis test to compare the stability of two algorithms on a given data set.

3. It is a proper generalization of several existing measures (and therefore the statistical
tools we develop are also applicable to those measures).

4. It is computable in linear time as opposed to quadratic, as is the case for most measures
in the literature.

5. Given the theoretical and computational properties above, it can reliably be used to
select hyperparameters for feature selection algorithms, such as LASSO or Stability
Selection (Meinshausen and Bühlmann, 2010).

1. The R package OmicsMarkeR provides 7 different options for measuring stability, with no guidance for
which to use, in which situation (c.f. www.rdocumentation.org/packages/OmicsMarkeR).
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In the following sections we explain our framework, first embarking on a brief review of
existing literature. For a more thorough review and an extended version of this work, refer
to Nogueira (2018). We also provide:

• The code in R and Matlab at github.com/nogueirs/JMLR2018 for the proposed
measure and associated statistical tools. The code for all experiments is also available,
enabling reproducible research.

• A Python package and a demonstration notebook using the package at github.com/
nogueirs/JMLR2018/tree/master/python/

• A demonstration web page at www.cs.man.ac.uk/~gbrown/stability

2. Background

We assume a data set of n examples {xi, yi}ni=1 where each xi is a d-dimensional feature
vector and yi is the associated label. The task of feature subset selection is to identify
a subset of the dimensions, of size k < d, that conveys the maximum information about
the label y. The challenge of feature selection can be tackled in various ways, commonly
grouped in three families: filters, wrappers, and embedded methods (Guyon and Elisseeff,
2003). Filters assign a score to a feature subset (or a feature) based on statistics of the data,
independently of any particular classifier—for example mutual information-based methods.
Wrappers, on the other hand, evaluate a subset based on an error criterion (and therefore
are classifier-specific). Because there are 2d−1 possible feature subsets, filters and wrappers
often use a search procedure such as a forward or backward search to only evaluate some
of the subsets. Finally, embedded methods sit in between these two, choosing a subset
as an integral part of learning a prediction model—for example LASSO and other penal-
ized likelihood methods. The output of a feature selection algorithm is therefore either a
weighting (or scoring) on the features, a ranking on the features or a subset of the features.
Sorting the weights naturally gives a ranking on the features, and selecting the top-k ranked
features gives a subset of the features. This way, the output of any weighting or ranking
feature selection technique can be treated as a subset selection one (while the reverse is
not true). The input to any given procedure is the data set, which itself is assumed to be
a finite sample from a generating distribution. If the sample varies, logically the selected
feature subset may vary—this variation is the stability.

It is important to note why instability may occur, and what is commonly done about it—
the sources of, and solutions to instability. Several authors study how stability is influenced
by data characteristics, such as noise (Shanab et al., 2011), data dimensionality, sample size
(Alelyani, 2013), imbalance of the data set (Dittman et al., 2012) or feature redundancy
(Gulgezen et al., 2009; Wald et al., 2013). Additionally, several works have been proposed
to increase stability. These include variance reduction frameworks (Han and Yu, 2012),
sample weighting (Yu et al., 2012), ensemble feature selection (Ditzler et al., 2015; Saeys
et al., 2008) and multi-objective optimization (Baldassarre et al., 2017; Gulgezen et al.,
2009; Kalousis et al., 2007).

It can be noted that each of these works, by definition, mandates the authors to measure
stability—to know whether they have increased it, or decreased it. A typical approach to
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measure stability is to first take M bootstrap samples of the provided data set, to apply
feature selection to each one of them, and then to measure the variability in the M feature
sets obtained. Approaches other than taking bootstraps have been considered, such as
noise injection (Wald et al., 2012b; Altidor et al., 2011) or random subsampling (Wald
et al., 2012a). However, in this article, we aim at measuring the variation with respect to
data sampling. For this reason, we adopt the bootstrap approach due to its well understood
properties and familiarity to the community.

Let Z = {s1, ..., sM} be a collection of feature sets, where each si is a subset of the
d features and let a stability measure Φ̂ be a function taking as input Z and returning a
stability value2. How can we define Φ̂ so that it measures the variability of the feature
sets in Z? In the literature, we find two approaches to this problem—the similarity-based
approach and the frequency-based approach that we introduce in the next two sections.

2.1 Similarity-based Measures

First introduced by Dunne et al. (2002), the similarity-based approach consists in defining
Φ̂ as the average pairwise similarity between the M(M − 1) possible pairs of feature sets in
Z, that is

Φ̂(Z)︸ ︷︷ ︸
Stability measure

=
1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

φ(si, sj)︸ ︷︷ ︸
Similarity measure

,

where φ is a function taking two feature sets as input and returning a similarity value.
The more the feature sets in Z are similar to each other on average, the larger the value
of Φ̂(Z) will be. Therefore, the definition of Φ̂ and its properties critically depend on the
choice of a similarity measure φ. Dunne et al. (2002) proposed to use the relative Hamming
distance between two feature sets as a measure of their similarity. Since it was introduced,
this approach gained popularity in the literature and we found to date 8 other proposals of
similarity measures to be used in this context (c.f. Appendix 2.1 for more details). Kalousis
et al. (2007) proposed to use the Jaccard index, Yu et al. (2008) the Dice-Sørenson index,
Zucknick et al. (2008) the Ochiai index and Shi et al. (2006) the POG index (Percentage
of Overlapping Genes). Kuncheva (2007) analysed some of the existing stability measures
and demonstrated that they were behaving in undesirable ways. It pioneered the property-
based approach, proposing a new similarity measure based on a set of 3 properties, proven
to be essential to the correct comparison and interpretation of stability values. Because
of its well-known properties, the proposed measure was used in many works that followed.
Nevertheless, Kuncheva’s measure was only defined for feature selection algorithms that
guarantee to return a constant number of features. Other authors proposed to extend
this measure to more general scenarios where the number of features selected is not pre-
determined by the user (Lustgarten et al., 2009; Wald et al., 2012b). Nevertheless, we will
see in Section 3 that the proposed extensions somehow lose some of the desirable properties.

2. We include the ‘hat’ notation Φ̂ to acknowledge that the value is an estimate of an underlying quantity,
dependent on the sample size M .
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2.2 Frequency-based Measures

An alternative representation for a feature set is to regard the feature choices as a binary
string of length d, where a 1 at the f th position means feature Xf has been selected in the set
and a 0 means it has not been selected. This representation has driven the frequency-based
approach, where one can measure stability by (for example) looking at the frequencies of
selection of each feature over the M feature sets. The collection of the M feature sets can
therefore be modelled as a binary matrix Z of size M × d, where a row represents a feature
set and a column represents the selection of a given feature over the M repeats as follows

Z =


z1,1 z1,2 · · · z1,d

z2,1 z2,2 · · · z2,d
...

...
. . .

...
zM,1 zM,2 · · · zM,d

 .

In the remainder of this paper, we will denote the observed frequency of selection of feature
Xf by p̂f = 1

M

∑M
i=1 zi,f , the mean of the f th column of Z. We also model the selection of the

f th feature by a Bernoulli variable Zf with unknown mean pf . Since these two alternative
representations are equivalent, with a slight abuse of notation, we will interchangeably
denote by Z a collection of M feature sets or the matrix of M binary vectors. Intuitively,
frequencies closer to 0 or 1 will indicate higher stability as it will mean that a feature is
either selected on almost all M feature sets or on almost none of them; but as we will
later see, defining a measure in this category can also prove to be challenging. In total,
we identified 6 stability measures in this category (c.f. Appendix A.2 for more details),
which are all either a function the observed frequencies of selection of each feature (Davis
et al., 2006; Goh and Wong, 2016; Guzmán-Mart́ınez and Alaiz-Rodŕıguez, 2011) or of the
observed frequencies of selection of each feature set (Kŕızek et al., 2007).

3. A New Set of Properties for Stability Measures

Given the variety of stability measures published, it is sensible to ask whether any one is
more valid than the others. This seems somewhat of a philosophical question—what does
it mean for one stability measure to be more “correct” than another? To answer this, we
adopt the perspective that a measure should (1) provably obey certain properties that are
desirable in the domain of application and (2) provide capabilities that other measures do
not. In this section, we aggregate and generalize the requirements of the literature into a set
of 5 properties3, given in Table 1, that we will show to be critical to the interpretation and
comparison of stability values. For each property, we also study which one of the existing
measures satisfy the property and we summarize our findings in Table 2. Our results show
that none of the existing measures possess all 5 properties, which leads us to Section 4.1
where we propose a new stability measure.

3. As opposed to what has been done in some previous works (Kuncheva, 2007), these properties are
functions of the stability measure rather than the set similarity measure—this will allow to compare the
properties of both pairwise and non-pairwise stability measures in a single framework.
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1. Fully defined. The stability estimator Φ̂ should be defined for any
collection Z of feature sets, thus allowing for the total number of
features selected to vary.

2. Strict Monotonicity. The stability estimator Φ̂ should be a strictly
decreasing function of the sample variances s2

f of the variables Zf .

3. Bounds. The stability Φ̂ should be upper/lower bounded by con-
stants not dependent on the overall number of features or the num-
ber of features selected.

4. Maximum Stability ↔ Deterministic Selection. A measure should
achieve its maximum if-and-only-if all feature sets in Z are identical.

5. Correction for Chance. Under the Null Model of Feature Selection
H0, the expected value of Φ̂ should be constant.

Table 1: Proposed Properties for a Stability Measure.

3.1 Fully Defined

The first property, Fully Defined, is that a stability measure Φ̂ should be able to cope with
any collection Z of feature sets. We observed that some of the stability measures do not
obey this property. More specifically, the measures proposed by Kuncheva (2007), Kŕızek
et al. (2007), Guzmán-Mart́ınez and Alaiz-Rodŕıguez (2011) and Lausser et al. (2013) are
only defined for a feature selection algorithm that would always return a constant number
of features (c.f. definitions in Appendix A). Stability measures not having this property will
not be defined for a wide class of feature selection algorithms, such as L1-regularization,
and therefore such stability measures cannot be used to compare the stability of feature
selection algorithms of different types.

3.2 Strict Monotonicity

By definition, all 9 similarity measures proposed to quantify stability are a strictly increasing
function of the size of the intersection |si∩ sj | between the two sets si and sj given as input
(c.f. Appendix A.1). Kuncheva (2007) explicitly states this as a required property for
a similarity measure. This property is implicitly defining what similarity (and therefore
stability) is. Since the stability is defined as the average pairwise similarities, in the more
general case, this property would naturally translate to: For a given collection of feature
sets Z, the stability Φ̂ should be an increasing function of the average pairwise intersection
size 1

M(M−1)

∑M
i=1

∑M
j=1
j 6=i
|si ∩ sj |. Even though this property can be applicable to any

stability measure (as it is not phrased in terms of a similarity measure any more), it is not
straightforward to comprehend the meaning of this property, neither to verify if a stability
measure possesses this property, especially for frequency-based measures. We can therefore
wonder what this does translate to in the frequency-based representation and how can
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we verify that non-pairwise measures possess this property? Theorem 1 bridges the two
approaches and justifies our second property, Strict Monotonicity4.

Theorem 1 The average pairwise intersection between the M feature sets is as a linear
function of the sample variances of the selection of each feature. More precisely,

1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

|si ∩ sj | = k̄ −
d∑

f=1

s2
f , (1)

where s2
f = M

M−1 p̂f (1 − p̂f ) is the unbiased sample variance of the selection of the f th

feature5 and where k̄ = 1
M

∑M
i=1

∑d
f=1 zi,f is the average number of features selected over

the M feature sets.

As we can see from Theorem 1, phrasing Monotonicity in terms of the average pairwise
intersections is equivalent to phrasing it in terms of the average variance of the selection of
each feature, which led to the definition of this property as stated in Table 1. This property
defines what a stability measure should measure, rather than stating a necessary condition
for a stability measure; therefore other proposals could be made for this purpose. For this
reason, we will not discard the measures not having this property. However, it is interesting
to note that, as we can see in Table 2, most stability measures have this property, showing
some agreement upon the definition of stability across the literature, even if never stated as
such. In some way, we can say that most existing measures of the literature implicitly aim at
measuring the same quantity. In summary, we showed that: (1) interestingly, most stability
measures of the literature possess this property, even though they were not explicitly built
to that end, (2) the variance of the selection of each feature is an intuitive and simple way
of measuring the variability in the choice features and (3) such a definition will allow us to
derive a statistical framework for stability estimates, as we will later see in Section 4.2.

3.3 Bounds

This property was stated as necessary in several works. Somol and Novovičová (2010);
Zucknick et al. (2008); Guzmán-Mart́ınez and Alaiz-Rodŕıguez (2011) require a stability
measure to be bounded by constants, while Kuncheva (2007) express the same requirement
but for a similarity measure. Some of the measures such as Kŕızek et al. (2007) do not
possess this property, since its maximum value depends on the number of features selected
k and on the total number of features d (c.f. Appendix A.2). Unbounded measures do
not allow for meaningful interpretation of stability values across problems or for different
number of features selected, which can be restrictive in many applications.

4. To clarify: strict monotonicity is such that for a function g defined on a set Dg, g is a strictly mono-
tonically (decreasing) function if ∀x1, x2 ∈ Dg, x1 < x2 ⇒ g(x1) > g(x2). A counter-example showing
the need for strict monotonicity (as opposed to monotonicity only) is to take any constant function: it
will be monotonic as it will be an non-decreasing function of |si ∩ sj | but cannot be interpreted as the
similarity between two feature sets.

5. This expression of the sample variance is derived from a Bernoulli distribution.
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(a) Forward implication (b) Backward implication

Figure 1: Illustration of the Maximum property. On the left, demonstration that Wald’s
measure and CWrel (Somol and Novovičová, 2010) violate the forward implica-
tion. On the right, demonstration that Lustgarten’s (Lustgarten et al., 2009) and
Goh’s (Goh and Wong, 2016) measures violate the backward implication7.

3.4 Maximum Stability ↔ Deterministic Selection

For meaningful interpretation of a stability measure and comparison across problems, the
range of values of a stability measure should be known and finite. Kuncheva (2007) states
that IF two feature sets si and sj are identical THEN their similarity is maximal, a desirable
behaviour. Similarly, Guzmán-Mart́ınez and Alaiz-Rodŕıguez (2011) also require that Φ̂(Z)
reaches its maximum whenever all the feature sets in Z are identical. We make this require-
ment a bi-implication, which translates in the general case to: Φ̂(Z) reaches its maximum,
if-and-only-if all feature sets in Z are identical, as stated in Table 1. We illustrate the need
for the bi-implication below.

We used two scenarios, distinguishing the forward implication from the backward im-
plication. First, we generated a collection of feature sets Z in which half of the feature sets
are {X1, ..., Xk} and the other half are {X1, ..., Xk−1}. Since there is clearly some varia-
tion in the features selected, the selection is not deterministic and we would want stability
values not to be equal to their maximum. We plotted stability values against k for d = 10
and M = 100 in Figure 1a for some stability measures. We can see that Wald’s measure
(Wald et al., 2013) and CWrel measure (Somol and Novovičová, 2010) still return their
maximum value of 1. Therefore, these two measures violate the forward implication of this
property. Second, we generated a collection of feature sets Z in which the same k features
are selected on every repeat (for d = 10). Since the feature selection is now deterministic,
we would want all stability values to be equal to their maximum. We plotted the stability
values against the number of features selected k in Figure 1b. Even though the selection
is completely deterministic, we can see that Lustgarten’s and Goh’s measure takes variable
stability values depending on the number of selected features k. This shows that the two
measures violate the backward implication of this property.

7. We ignored Krizek’s measure in the right sub-figure as it is the only measure for which lower values
correspond to higher stability and therefore, it should reach its minimum here instead of its maximum.
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3.5 Correction for Chance

The fifth property, Correction for chance, was a novel concept introduced in the field by
Kuncheva (2007) (but already existing in the statistical literature, c.f. Berry et al., 2016).
This states that whenever we have independently drawn subsets at random, the stability
value should be constant in expectation. This property was also later required by Lustgarten
et al. (2009); Zhang et al. (2009); Guzmán-Mart́ınez and Alaiz-Rodŕıguez (2011). When
the number of features selected is constant, the notion of purely random feature selection is
intuitive: it means that on each sample, given the number of selected features k, each one of
the

(
d
k

)
feature sets is equally likely to be chosen by the procedure. Now, let us take the case

when the procedure does not guarantee to return a constant number of features, and thus
produces a collection Z of feature sets, of varying size. We can still define the concept of
randomness in that case: given the cardinality ki of the ith set, each one of the

(
d
ki

)
possible

feature sets has an equal probability of being selected. We note that this is the assumption
(sometimes implicitly) made by different authors using the concept of correction for chance,
e.g. Kuncheva (2007); Lustgarten et al. (2009); Zhang et al. (2009); Guzmán-Mart́ınez and
Alaiz-Rodŕıguez (2011). Since we will use this concept multiple times in the remainder of
the paper, we formalize this in Definition 2 and will refer to this assumption as the Null
Model of Feature Selection.

Definition 2 (The Null Model of Feature Selection H0) We define the Null Model
of Feature Selection as the situation where all possible permutations of the observed bits in
a row of Z are equally likely. In other words, for all rows i in Z, all subsets of size ki have
an equal probability of being drawn.

Our final property, Correction for chance is that: under the Null Model of Feature Selection
H0, the expected value of Φ̂ should be constant, which for convenience we set to 0 (as done
by other authors). The motivation behind such a property is that we would not want a
stability measure to reflect the similarity between feature sets that might occur by chance,
but only that due to the systematic decision-making of the feature selection algorithm. For
illustrative purposes, we reproduced the experiment of Kuncheva (2007) in Figure 2. Let
us assume that a feature selection procedure randomly selects k features out of d = 10
features and that we estimate the stability based on the M = 100 feature sets obtained for
different values of k. As we can see, even though the feature selection procedure is random
and therefore corresponds to a fully unstable situation (i.e. we are under the Null Model of
Feature Selection H0), some stability measures are strongly biased by the feature set size.
For instance, we can see that using the Dice similarity measure, the stability systematically
increases with the number of features selected, thus being in favour of larger feature sets.
On the other hand, Kuncheva’s measure that is corrected for chance gives a stability close
to 0, no matter what the feature set size is as it is corrected for chance. Non-corrected
measures make stability values neither comparable nor interpretable in different settings.

To prove whether a measure has this property or not, we derived the value of E
[
Φ̂|H0

]
for

each of the existing measures in Appendix C.5 and reported the results in Table 2.
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Figure 2: Illustration of the Correction-for-chance property. Stability values using Ham-
ming, POG, Jaccard, Dice and Kuncheva similarity measures against the number
k of features selected for M = 100 repeats.

Name Fully defined Monotonicity Bounds Maximum Correction

Hamming 3 3 3 3

Jaccard 3 3 3 3

Dice 3 3 3 3

Ochiai 3 3 3 3

POG 3 3 3 3

Kuncheva 3 3 3 3

Lustgarten 3 3 3 3

Wald 3 3 3

nPOG 3 3 3 3

Goh 3 3

Davis 3 3

Kŕızek 3

Guzmán 3 3 3

CWrel 3 3 3

Lausser 3 3 3

Table 2: Properties of Stability Measures proposed in the literature 2002–2018. For each of
the 15 measures, and for each of the 5 properties, we prove which measure satisfies
which property — full proofs available in Appendix C.
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3.6 Summary

In the literature, many authors advocated for the need of stability measures with well-known
properties. In this section, we aggregated and generalised the properties stated as desirable
in the literature into a set of desirable 5 properties8—applicable to any stability measure
(whether similarity-based or not) and to any any feature selection algorithm (whether it
selects a constant number of features or not)—in Table 1. Then, Table 2 summarizes the
properties of each one of the stability measures. The first 5 measures are similarity-based
measures and as we can see, they all possess all properties except Correction for chance.
This weakness, noticed by Kuncheva (2007), gave rise to corrected-by-chance similarity-
based measures, which are the 4 following measures of Table 2. As we can see, even though
these 4 proposals all possess the Correction-for-chance property, they somehow lost some
of the other desirable properties. Finally, the 6 following measures in the table are the
frequency-based measures, which are more diverse in terms of the set of properties they
satisfy. We note that even though CWrel (Somol and Novovičová, 2010) does not possess
the Correction-for-chance property, when the number of features selected is constant, we
show in Appendix C.5 that it is asymptotically (as M approaches infinity) corrected for
chance. We can therefore conclude that none of the stability measures in the literature
possess all desired properties (even when discarding the Monotonicity property). Based
on these results, we derive a novel stability measure in the next section, that not only
has all desired properties, but also will allow us to develop a statistical framework for the
quantification of stability.

4. A Novel Stability Measure

In this section, we propose a measure of stability which provably attains all desirable prop-
erties as discussed in the previous section. We recognise the stability measure Φ̂ as an
estimator of a random variable, and aim to make explicit the corresponding population
parameter Φ. By identifying the sampling distribution, we are able to provide tools for
practitioners such as confidence intervals and hypothesis tests. This provides confidence
in what the true value may be, and allows us to reliably compare stability across feature
selection procedures. In the remainder of the paper, we refer to the stability measure as
the stability estimator and to the parameter being estimated as the population stability or
the true stability.

4.1 Proposed Stability Estimator

As required by the Monotonicity property, the stability should be a strictly decreasing
function of the variances of the selection of each feature—for simplicity, we just negate
the mean of the sample variances. As required by Correction for Chance, we rescale it by
its expected value under the Null Model of Feature Selection. Finally for convenience of

8. Another property sometimes stated as desirable in the literature concerns the symmetry of the similar-
ity measure φ (i.e. φ(si, sj) = φ(sj , si)) (Alelyani, 2013; P. and Perumal, 2016; Zucknick et al., 2008).
We note that for any non-symmetric similarity measure φ, taking the arithmetic mean of φ(si, sj) and
φ(sj , si) gives a symmetric similarity measure holding the same average pairwise value. Thus, the symme-
try of a similarity measure φ is of little importance when comparing the properties of the corresponding
stability measure Φ̂.
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interpretation, we ensure that (asymptotically) the value is in the range [0, 1] by taking
one minus the resulting expression. Making use of Theorem 3 and by linearity of the
expectation, this gives us our stability estimator as given in Definition 4.

Theorem 3 Under the Null Model of Feature Selection H0, for all f , the expected value of

the sample variance of Zf is E
[
s2
f |H0

]
= k̄

d

(
1− k̄

d

)
.

Definition 4 (Novel Measure) We define the stability estimator as

Φ̂(Z) = 1−
1
d

∑d
f=1 s

2
f

E
[

1
d

∑d
f=1 s

2
f |H0

] = 1−
1
d

∑d
f=1 s

2
f

k̄
d

(
1− k̄

d

) , (2)

where s2
f = M

M−1 p̂f (1−p̂f ) is the unbiased sample variance of the selection of the f th feature.

We now verify that the proposed measure possesses all 5 properties. First, by construc-
tion, we can see that the measure is defined for all collections Z, unless the denominator
k̄
d

(
1− k̄

d

)
is equal to zero. This happens whenever k̄ = 0 or k̄ = d, which are the two

limit cases in which the algorithm does not select any features over the M feature sets in
Z or selects all of the features on every feature set of Z. Since by definition, a feature
selection procedure will always select a non-empty proper subset of the set of all available
features, the first property Fully defined holds for the proposed definition of Φ̂. Second,
by construction, Φ̂ is a linear function of the sample variances s2

f with a strictly negative

slope. Therefore, the Monotonicity property holds for Φ̂. Third, to conform to the Bounds
property—by inspection, one can see the numerator and denominator in the measure are
positive quantities, therefore the upper bound is 1. For the lower bound, Appendix D shows
that the minimum of Φ̂ is equal to − 1

M−1 . This shows that Φ̂ is bounded by −1, but is
asymptotically bounded by 0 (as M approaches infinity). Fourth, let us assume for some
Z, the measure achieves its maximum, Φ̂(Z) = 1. This state is equivalent to

∑d
f=1 s

2
f = 0.

Since the variance is a positive quantity, this is in turn equivalent to s2
f = 0 for all f . This

case corresponds to the situation where each column of Z contains either all 1s or all 0s.
Thus Φ̂ is equal to its maximum if-and-only-if all feature sets in Z are identical. Fifth,
under the Null Model of Feature Selection H0, by linearity of the expectation and using

Theorem 3, E
[
Φ̂|H0

]
= 0. Therefore, the proposed measure is corrected for chance.

Theorem 5 shows that the proposed measure of stability Φ̂ is a generalization of some
other widely used measures to feature sets of varying cardinality, hence being consistent
with previous literature. As a result, all statistical tools of Section 4.2 are also valid for
Kuncheva’s measure and for the other equivalent measures, hence unifying some of the
theory on the measurement of stability. The reformulation of Kuncheva’s measure using
our definition also provides a computational advantage, being O(Md) instead of O(M2d)
(which is the computational complexity of all pairwise measures).

Theorem 5 When the number of features selected is constant:

• The stability estimator Φ̂ is equal to the stability measures proposed by Kuncheva
(2007), Wald et al. (2013) and to nPOG (Zhang et al., 2009).
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• The stability estimator Φ̂ and CWrel (Somol and Novovičová, 2010) are asymptotically
equivalent.

In the next section, we provide the population parameter Φ estimated by Φ̂, that is the true
stability of the feature selection procedure considered.

4.2 Statistical Tools

In the previous section, we proposed a new stability measure that possesses all desirable
properties and is a generalization of some of the existing measures of the literature. We
can also ask how it relates to other parts of the literature and which other fields deal with
similar problems. This section demonstrates and exploits a relationship between stability
and inter-rater agreement (Fleiss, 1971).

4.2.1 Viewing Stability as Inter-rater Agreement

Imagine a medical scenario—we have M doctors (more formally called raters) assigning
a nominal category {1, 2, ..., q} to each member of a set of d patients (called subjects).
A useful indication of the agreement of the M raters is given by inter-rater agreement
coefficients. We can view stability in this light—when the number of categories q is equal
to 2, and each row of Z represents a rater, placing the d subjects into category 0 or 1.
Interestingly9, in this special case, we prove with Theorem 6 that a popular measure of
inter-rater agreement, Fleiss’ Kappa (Fleiss, 1971) reduces to our estimator, Definition 4.
As a result, any statistical result previously derived for Fleiss’ Kappa also holds for Φ̂. Using
this relationship, we can use the work of Gwet (2008) which shows the asymptotic normality
of Fleiss’ Kappa, hence guaranteeing the validity of confidence intervals and hypothesis tests
for large samples.

Theorem 6 When there are only two categories (0/1), Fleiss’ Kappa is equal to Φ̂(Z).

4.2.2 The Sampling Distribution of Stability

Let us assume each row of the matrix Z is an independent sample from the joint distribution
(Z1, ..., Zd), where Zf is a Bernoulli variable with unknown population parameter pf , where
we make no assumption of independence between d covariates. In the original paper, Fleiss
(1971) derives the variance of Fleiss’ Kappa, but only when Φ is equal to 0, which is of little
use in our case. Later on, Gwet (2008) provides a variance estimate and the asymptotic
distribution of Fleiss’ Kappa in the general case. In his work, Gwet (2008) assumes that
the raters (samples) and subjects (features) are sampled from a larger population and then
derives the variance due to the sampling of raters and the variance due to the sampling of
subjects. Using the multivariate Central Limit Theorem and a linear approximation of Φ̂,
Gwet (2008) shows that Φ̂ is asymptotically normal. Gwet (2008) also verifies the validity of
this result for the construction of confidence intervals with Monte Carlo simulations. In our
case, we assume that there is no sampling of the subjects and that the number of categories

9. Another interesting relationship that could be used in future work is that Fleiss’ Kappa has also been
linked to the Intra-Class Correlation Coefficient (ICC) in the binary case (Fleiss et al., 2004), so any
result that applies to the ICC can also be applied to the proposed stability estimator.
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q = 2. Under these assumptions, the variance due to the sampling of subjects derived
by Gwet (2008) becomes zero and the asymptotic distribution of the stability estimator Φ̂
becomes the one given by Theorem 7.

Theorem 7 (Asymptotic Distribution) As M → ∞, the statistic Φ̂ weakly converges
to a normal distribution, that is

Φ̂− Φ√
v(Φ̂)

L−→ N (0, 1),

where:

• Φ = 1−
1
d

∑d
f=1 pf (1−pf )

p̄(1−p̄) is the mean of the estimator Φ̂ in which p̄ = 1
d

∑d
f=1 pf is the

average mean parameter of the d Bernoulli variables;

• v(Φ̂) = 4
M2

∑M
i=1(Φ̂(i) − ˆ̄Φ(.))

2 is an estimate of the variance of Φ̂ in which:

– Φ̂(i) = 1
k̄
d

(
1− k̄

d

) [1
d

∑d
f=1 zi,f p̂f −

kik̄
d2 + Φ̂

2

(
2k̄ki
d2 − ki

d −
k̄
d + 1

)]
;

– and ˆ̄Φ(.) is the average value of Φ̂(i), that is 1
M

∑M
i=1 Φ̂(i).

This asymptotic distribution allows us to identify Φ̂ as being an estimator of an unknown
population quantity Φ. In the remainder of the paper, we refer to Φ̂ as being the sample
stability and to Φ as being the population (or true) stability. The asymptotic convergence
shows that Φ̂ is a consistent estimator of the population stability Φ. This means that as M
approaches infinity, we are assured that the stability estimator Φ̂ will converge in probability
to the population stability Φ.

4.2.3 Confidence Intervals

The asymptotic convergence to a normal distribution allows us to derive approximate con-
fidence intervals for the population stability Φ, given below in Corollary 8. Though the
provided confidence intervals are only approximate, we will see in Section 5.2 that even for
relatively small values of M , the given intervals still have a good coverage probability.

Corollary 8 (Confidence Intervals) A (1− α)%-approximate confidence interval for Φ
is [

Φ̂− z∗(1−α
2 )

√
v(Φ̂), Φ̂ + z∗(1−α

2 )

√
v(Φ̂)

]
,

where z∗
(1−α

2 )
is the inverse cumulative of a standard normal distribution at 1− α

2 .

4.2.4 Hypothesis Testing

In a first scenario, let us assume a practitioner applies a feature selection procedure to M
bootstrap samples, generating a matrix Z of size M × d, and computes the stability esti-
mate Φ̂(Z). How can we know whether the true stability Φ is significantly greater than
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a fixed value Φ0? This can be defined formally in terms of a null hypothesis significance test.

Is the Population Stability Φ Greater than a Given Value Φ0? In this case the
hypothesis tested is {

H0 : Φ = Φ0

H1 : Φ > Φ0

Under H0, Φ = Φ0 and therefore the statistic VM = Φ̂−Φ0√
v(Φ̂)

is asymptotically standard

normal (c.f. Theorem 7). Therefore we can apply a one-tail test as follows:

1. Compute the statistic VM .

2. Reject H0 if VM ≥ z∗(1−α), where the critical value z∗(1−α) is the (1− α)th percentile
of the standard normal distribution.

In addition, it is very common to compare stability values between algorithms. For ex-
ample, Saeys et al. (2008) conclude that “RELIEF is one of the less stable algorithms” and
“Random Forests clearly outperform other feature selection methods regarding robustness”.
So given two stability estimates Φ̂(Z1) and Φ̂(Z2), can we conclude that the true stability
of the first is significantly different than the second?

Do Two Feature Selection Algorithms Have Identical Stabilities? Let Z1 and
Z2 be the output of two feature selection procedures. In this case, we wish to test the
following hypothesis {

H0 : Φ1 = Φ2

H1 : Φ1 6= Φ2

Using the asymptotic distribution of Φ̂(Z1) and of Φ̂(Z2) given by Theorem 7, we can
derive Theorem 9. Using the given test statistic TM , we reject H0 if |TM | ≥ θ, where θ is

the
(
1− α

2

)th
percentile of the standard normal distribution.

Theorem 9 The test statistic for comparing stabilities is

TM =
Φ̂(Z2)− Φ̂(Z1)√

v(Φ̂(Z1)) + v(Φ̂(Z2))
.

Under H0, the statistic TM asymptotically (as M approaches infinity) follows a standard
normal distribution.

5. Empirical Validation of the Statistical Tools

Fleiss et al. (2004) propose a benchmark scale for interpretation of the value of Fleiss’
Kappa. We will use the same scale for Φ̂(Z), provided in Table 3. Stability values above
0.75 represent an excellent agreement of the feature sets beyond chance, while values below
0.4 represent a poor agreement between sampled feature sets.

In the remainder of this section, we verify the tools of the previous section, using toy
data for a population stability Φ in each one of the categories. To be able to generate
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Φ Strength of Agreement

< 0.40 Poor

0.40 to 0.75 Intermediate to good

> 0.75 Excellent

Table 3: Benchmark scale for stability.

(a) Case 1: Φ = 0.8 (b) Case 2: Φ = 0.5 (c) Case 3: Φ = 0.3

Figure 3: Consistency of the stability estimate Φ̂(Z) for the 3 toy cases. As M increases,
the value of Φ̂(Z) gets closer to the population parameter Φ.

Bernoulli variables with a specified population stability Φ0, we first need to chose d Bernoulli
parameters p1, ..., pd such that Φ = Φ0. We picked 3 test cases for the values of Φ equal 0.8,
0.5 and 0.3 and for d = 100.

5.1 Validation of Consistency of the Estimator

In this section, we empirically show the consistency of the stability estimator Φ̂ in the 3 test
cases described. In each case, we take M samples from the d = 100 Bernoulli variables with
mean parameters (p1, ..., pd). This gives us a binary matrix Z of size M × d. We then plot
the value of the stability estimate Φ̂(Z) as we increase the number of samples M in Figure 3.
As we can see, as the number of samples M increases, the value of Φ̂(Z) approaches the
true stability Φ. We chose similar scales for the 3 test cases. We observe that for relatively
small values of M , (generally for M ≤ 10), the absolute value of the difference |Φ̂(Z)−Φ| is
within 5% and for M ≤ 100, within 1%. Of course, these cannot be used as a general rule of
thumb for other chosen parameters pf and d but it gives an idea of the rate of convergence
of the stability estimates. In real applications, the population stability is unknown and we
need tools to be able to determine which interval of values the population stability takes.
This is the topic of the next section where we study the confidence intervals.
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(a) Case 1: Φ = 0.8 (b) Case 2: Φ = 0.5 (c) Case 3: Φ = 0.3

Figure 4: Coverage probabilities for the 3 test cases. We set the nominal level to be 0.90
(90%-confidence interval). The x-axis represents the sample size M and the y-axis
the estimated coverage probability with 10000 repeats.

5.2 Validation of Confidence Intervals

The coverage probability of a confidence interval for Φ is the proportion of time the interval
built from the data will actually contain the population stability Φ. To verify the results of
Theorem 8 providing the confidence intervals, we adopted the following procedure:

1. Compute the population stability Φ using the true Bernoulli parameters (p1, ..., pd).

2. Repeat 10,000 times:

• Take M samples from the d variables Z1, ..., Zd with mean p1, ..., pd.

• Compute the (1− α)-approximate confidence interval using Corollary 8.

3. The estimated coverage probability is the fraction of times (from 10,000) that the true
stability Φ was within the confidence intervals.

If we had exact confidence intervals, we should have an exact coverage probability of (1−α).
However, the confidence intervals derived are only approximate. Figure 4 gives the estimated
coverage probabilities in the 3 test cases for α = 10%, i.e. a 90%-confidence interval.

As we can see, the estimated probability quickly approaches (1−α) = 0.9 as expected. In
Table 4, we further show the observed coverage probabilities in the 3 test cases for M = 100
and for different values of α. The same behaviour can be seen in this table: the values get
very close to the expected coverage probability of (1−α). We observed the same behaviour
for a larger number of features (d = 10000) and a same number of feature sets M .

5.3 Validation of the Second Hypothesis Test

In this section, we verify the asymptotic distribution of the test statistic TM as given by
Theorem 9. To verify this result we proceed as follows:

1. Pick two set of parameters p1, ..., pd with the desired values of Φ1 and Φ2.

2. Repeat 1000 times:
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Case 1 Φ = 0.8 98.5% 94.3% 89.0%

Case 2 Φ = 0.5 98.6% 93.8% 89.0%

Case 3 Φ = 0.3 98.6% 94.0% 89.3%

Ideal 99% 95% 90%

Table 4: Coverage probabilities for the 3 test cases with M = 100, d = 100, estimated via
10, 000 repeats for different nominal confidence intervals.

(a) Φ1 = Φ2 = 0.8 (b) Φ1 = 0.8 and Φ2 = 0.75

Figure 5: QQ-plots illustrating the convergence of the statistic TM to a standard normal
distribution when Φ1 = Φ2 = 0.8 [LEFT] and the convergence to a non-standard
Gaussian when Φ1 6= Φ2 [RIGHT]. We took d = 100, M = 1000 and 1000 repeats.
We note that the range of values on the y-axis of the right plot is not the same
as the one of the left plot.

• Take M samples from the d variables, for each of Z1 and Z2

• Compute the corresponding statistic TM .

We then order the 1000 estimates of TM and plot the quantiles against that of a standard
normal distribution in a Quantile-Quantile plot (QQ-plot). Figure 5 provides the result for
two test cases. In the left sub-figure, the population stabilities are taken to be identical (i.e.
Φ1 = Φ2). In that situation, the QQ-plot shows that the quantiles of the test statistic TM
are identical to the ones of a standard normal distribution, which is the result we expected.
On the right sub-figure, we chose different population stabilities (i.e. Φ1 6= Φ2). In this case,
the QQ-plot shows that the quantiles are still the ones of a normal distribution but with a
mean different from 0. Indeed, if we have a closer look at the right sub-figure, we can see
that the range of values taken on the y-axis are all negative. The observed median of the
statistic TM in that case is of −3.8 and the statistic takes values in the interval [−7.6,−0.4].
Therefore the statistic TM is not standard normal in that situation.
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6. Experiments

The experiments of this section illustrate how the tools presented in this paper can be used
by practitioners to select hyperparameters with higher stability or to compare the stability
of different feature selection algorithms. This section contains two sets of experiments10:

• Section 6.1 focuses on the LASSO and the Elastic Net, which are both regularized
regression models that select features as part of the training process. The Elastic Net
is known to yield more stable coefficients than the LASSO in the presence of redundant
features (Zhou, 2013). This section shows that the proposed stability measure captures
this and that choosing a good trade-off between stability and accuracy can reduce the
number of irrelevant features in the model with negligible loss in accuracy.

• Section 6.2 focuses on a popular technique, Stability Selection (Meinshausen and
Bühlmann, 2010) which we apply to LASSO. The proposed framework defines the
stable set as the set of features being selected with high frequency across a set of reg-
ularizing parameters. We propose to look at the stability of the stable set for different
hyperparameters and compare it to the stability of LASSO.

6.1 The Stability of L1/L2 Regularized Logistic Regression

In this section, we observe how the degree of redundancy in data can affect the stability
of LASSO and Elastic Net, and how we can optimize hyperparameters so that both log-
likelihood and stability are taken into account. We show that stability can help recover
the true set of relevant features. To be able to control the set of relevant features and the
redundancy between them, we use a synthetic data set as described in the next section.

6.1.1 Description of the Data Set

We use a synthetic data set (Kamkar et al., 2015)—a binary classification problem, with
2000 instances and d = 100 features, where only the first 50 features are relevant to the
target class. Instances of the positive class are identically and independently drawn from a
normal distribution with mean µ+ = (1, ..., 1︸ ︷︷ ︸

50

, 0, ..., 0︸ ︷︷ ︸
50

) and covariance matrix

Σ =

[
Σ∗50×50 050×50

050×50 I50×50

]
,

where Σ∗50×50 is the matrix with ones on the diagonal and ρ (a parameter in [0, 1]) controlling
the degree of redundancy everywhere else. The mean for the negative class is taken equal
to µ− = (−1, ...,−1︸ ︷︷ ︸

50

, 0, ..., 0︸ ︷︷ ︸
50

). The larger the value of ρ, the more the 50 relevant features

will be correlated to each other.

10. You can reproduce all these experiments (in Matlab or R) with the code given at github.com/nogueirs/
JMLR2018
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6.1.2 Stability of LASSO

We use a L1-regularized logistic regression where λ is the regularizing parameter, influencing
the amount of features selected—as λ increases, more and more coefficients are equal to zero
and therefore less and less features are selected. We take 2000 samples and divide them into
1000 for model selection (i.e. to select the regularizing parameter λ) and 1000 for selection of
the final set of features. The model selection set can be used simply to optimize error, or to
optimize error/stability simultaneously—the experiments will demonstrate that the latter
provides a lower false positive rate in the final selection of features. We study 4 degrees of
redundancy: ρ = 0 (no redundancy, the features are independent from each other), ρ = 0.3
(low redundancy), ρ = 0.5 (medium) and ρ = 0.8 (high). We apply L1-logistic regression
to M = 100 bootstrap samples of the data set. We then compute the average out-of-bag
(OOB) log-likelihood11 and the stability of the feature selection.

Figure 6 shows the average log-likelihood (left column) and the stability (right column)
versus the regularization parameter λ for the 4 degrees of redundancy chosen. For each
degree of redundancy, the pink dashed-line represents the parameter λ maximizing the
likelihood and the black one represents the parameter maximizing the stability. In the case
of no redundancy, we can see that these two parameters produce similar values of likelihood
and stability. But, as we change the degree of redundancy, this is not the case. The result
can most strongly be seen in Figure 6b, where λ = 0.0051 optimizes likelihood, but if we
increase to λ = 0.0187, we sacrifice a negligible amount of likelihood for a quite significant
increase in stability to Φ̂ = 0.63.

Figure 7 shows an alternative view of these results, plotting stability against likelihood.
When there is no redundancy in the data (sub-figure (a)), stability seems to be an increasing
function of the likelihood. For higher levels of redundancy, this results in at least two
values of λ which achieve the same likelihood, but clearly one results in higher stability. In
practice, to choose a hyperparameter λ, we have to pick a trade-off between likelihood of
the model and stability. For this purpose, we can identify the pareto front of likelihood and
stability, which is the set of points such that there is no other point with higher likelihood
and higher stability. Hence, each point in the pareto front represents a different trade-off
between likelihood and stability. Figure 8 summarizes the pareto fronts for the 4 degrees of
redundancy. In a classic scenario, we would pick the value of λ that maximizes the likelihood
only, which corresponds to the rightmost point in the figure. However, we can see that
sacrificing a small amount of likelihood allows us to considerably increase stability. As we
increase the degrees of redundancy, we see the best case for stability is lower. Nevertheless,
all the points in a given pareto front have a similar likelihood and a similar misclassification
rate. All these observations show that stability can potentially be increased without loss of
predictive power.

We also observe that pursuing stability may help identifying the relevant set of features.
Figure 9 gives the observed frequencies of selection p̂f of each feature over the M = 100
bootstraps—where features 1−50 are relevant, and 51−100 are irrelevant in the case of high
redundancy. We picked the value of λ that maximized the likelihood for the left sub-figure
and a value of λ in the pareto front of stability and likelihood for the right sub-figure. On
the right figure, all 50 irrelevant features have a frequency of selection equal to 0 (i.e. the

11. In all the presented results, the log-likelihood is rescaled by the number of examples n.
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(a) No redundancy

(b) Low redundancy

(c) Medium redundancy

(d) High redundancy

Figure 6: Average OOB log-likelihood [left column] and stability [right column] against
the regularizing parameter λ for 4 degrees of redundancy. For each degree of
redundancy, the pink dashed-line corresponds to the λ value that maximizes the
likelihood and the black one corresponds to the value of λ that maximizes stability.
As we can see, by choosing latter parameter λ, we gain in stability with only a
small loss in likelihood.
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(a) No redundancy (b) Low redundancy

(c) Medium redundancy (d) High redundancy

Figure 7: Stability (with 95%-confidence intervals) against average OOB log-likelihood for
4 degrees of redundancy.

Figure 8: Summary of the pareto fronts for the 4 degrees of redundancy. The average OOB
misclassification error is given for the two extreme points of each pareto front.
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(a) λ = 1.3× 10−2 (b) λ = 6.8× 10−2

Figure 9: The observed frequencies of selection p̂f of each feature optimizing only the like-
lihood [LEFT] and choosing a trade-off between stability and likelihood [RIGHT]
for high redundancy (ρ = 0.8). The features on the left of the red vertical line cor-
respond to the 50 relevant features and the ones on the right to the 50 irrelevant
ones.

false positive rate 0), which means they have not been selected on any of the M = 100
samples. This is not the case when only maximizing the likelihood: we cannot discriminate
the set of relevant features from the set of irrelevant ones by looking at the frequencies of
selection p̂f . Using the 1000 holdout set, we applied L1-regularised logistic regression using
these two values of λ. Table 5 provides the false positives and false negatives for the 4
degrees of redundancy. The results show a decrease in the false positives when optimizing
both stability and likelihood while having a limited effect on the false negatives.

Redundancy Optimizing likelihood Optimizing both

none FP = 0, FN = 0 IDEM

low FP = 14, FN = 19 FP = 0, FN = 20

medium FP = 0, FN = 26 FP = 0, FN = 26

high FP = 12, FN = 38 FP = 0, FN = 39

Table 5: False positives and false negatives of the final feature set for different degrees of
redundancy ρ when optimizing only the likelihood against when optimizing both
likelihood and stability.

6.1.3 Stability of the Elastic Net

L1-regularization has the effect of forcing regression coefficients to zero, hence selecting a
subset of the available features. L2-regularization (ridge regression), is known to have a
grouping effect: correlated features will have similar coefficients (Zhou, 2013). The Elastic
Net is a convex combination of a L1 and a L2-regularization. It has two parameters, α and
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λ, where λ controls the overall weight of regularization and where α controls the balance
between the two regularizing terms. When α = 1, it becomes L1 (LASSO), and when α = 0
it is L2 (ridge regression). As α varies, the Elastic net blends between the two and offers
the advantages of both techniques—it forces some of the coefficients to be zero like LASSO
while having the grouping effect of the ridge regression. Correlated features are a source
of instability (Gulgezen et al., 2009; Wald et al., 2013), as feature selection procedures
will tend to select a different feature from a same group of correlated features on different
samples. Therefore, we expect the Elastic net to mitigate this, hence increasing stability.

In this section, we reproduce some of the experiments of the last section for the Elastic
Net, optimizing the two regularizing parameters α and λ. We proceed as before, taking
M = 100 bootstraps, and focus on the most challenging case of high redundancy (ρ = 0.8).
We confirm in Figure 10a that as λ increases, the overall regularization increases and less
features are selected. Figures 10b and 10c respectively give the average OOB log-likelihood
and the stability against the values of λ for different values of α. We can see that no matter
what is the value of λ chosen, α = 0.05 has a higher likelihood than the other values of α in
most cases and reaches high stability (greater than 0.90) for values of λ greater than 0.56.
Interestingly, for these values of α and λ, we can see in Figure 10a that the number of features
selected is around 50, which is the total number of relevant features. Let us have a closer
look at α = 0.05. If we were only optimizing the likelihood, we would pick λ = 0.05, which
yields a stability of 0.34. The corresponding average misclassification error is 14%. If we
wanted to also optimize stability, we could sacrifice a small amount of likelihood by picking
λ = 0.76 which yields a stability of 0.98. The corresponding average OOB misclassification
error is also 14%. Figure 11 gives the observed frequencies of selection p̂f for λ = 0.16 on the
left sub-figure (which is the value of λ that maximizes the likelihood) and for λ = 0.76 on
the right sub-figure (which is a value of λ optimizing both the likelihood and the stability).
We can see on the right sub-figure that when also optimizing stability, the whole set of
relevant features is selected on each one of the M = 100 samples and irrelevant features
are only rarely selected. On the left sub-figure, even though the likelihood for the given
hyperparameters and the misclassification error are similar, we can see that non-relevant
features are a lot more often selected in the model.

(a) Av. num. of feat. selected k̄ (b) Likelihood (c) Stability

Figure 10: Plots against λ where each line corresponds to a different value of α in the high
redundancy case (ρ = 0.8). We pick the α = 0.05 as it reaches a higher likelihood
for most values of λ and it can also achieve high stability.
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(a) α = 0.05 and λ = 0.16 (b) α = 0.05 and λ = 0.76

Figure 11: The observed frequencies of selection p̂f of each feature optimizing only the likeli-
hood [LEFT] and choosing a trade-off between stability and likelihood [RIGHT]
for high redundancy (ρ = 0.8). The features on the left of the red vertical line
correspond to the 50 relevant features and the ones on the right to the 50 irrel-
evant ones. We can see that optimizing both stability and likelihood [RIGHT]
helps recovering the set of relevant features.

6.1.4 Conclusions

In this section, we proposed a methodology to select hyperparameters using stability along
with the error. On the data set used, we showed that it is possible to select a hyperparameter
yielding much higher stability values without loss of predictive power. When the stability
is optimized along with the likelihood of the model, the false positive rate was lower. Using
the Elastic Net, we were able to achieve high stability for a similar loss than using LASSO.
Enforcing high stability had the effect of discriminating the set of relevant features, helping
to recover the true set of relevant features.

6.2 How Stable is Stability Selection?

In high dimensional data sets, picking a regularizing parameter λ that recovers the true
set of relevant features has proven to be challenging. For this reason, Meinshausen and
Bühlmann (2010) introduced a technique called “Stability Selection”, a popular and generic
approach that can also be used for solving other problems of structure estimation such as
graphical modelling. In this section, we focus on the use of Stability Selection in the context
of feature selection with LASSO. It proposes to apply LASSO to M random sub-samples
of size bn2 c of the original data set (where n is the sample size) for a set of regularizing
parameters λ ∈ Λ, where Λ is a subset of R+. This method considers the frequencies of
selection of each feature p̂f for each value of λ ∈ Λ and defines the set of stable variables
as the set of all variables having a frequency of selection p̂f ≥ πthr for at least one of the
regularizing parameters λ ∈ Λ (where πth is a user-defined threshold). Then they propose
to use the identified stable set as an approximation of the true relevant set.

The proposed technique is effectively an ensemble feature selection technique where
the final set is made of all features having a high frequency of selection p̂f for at least
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one the chosen regularizing parameter. The main contribution of Stability Selection is
that it provides a control over false discovery error rates (i.e. the number of irrelevant
features identified as relevant), and as a result, a principled way to choose the amount of
regularization for variable selection. In relation to our work, we can point out the following
interesting facts about this work: (1) it uses the concept of frequency of selection p̂f to
detect relevant features; (2) it uses the underlying idea that the stable set does not only
help recovering the true feature set but also will be more robust to the choice of regularizing
parameters; (3) It provides an upper bound and an exact control of the number of false
positives (i.e. the number of irrelevant features falsely selected). Therefore, this work
implicitly uses the idea that selecting stable features in the final set will help recover the true
set of relevant features, which is intimately linked to the results of the previous section where
we have shown that enforcing stability could potentially reduce the number of false positives.
Intuitively, the final set of variables picked by Stability Selection should be more stable in
the sense of our definition Φ̂(Z), as they select the variables showing a consensus across
multiple repeats of the data with perturbations and for different regularizing parameters.

In this section, we use our proposed measure to quantify just how stable their stable
set can be. To that end, we look at how much the final set picked by Stability Selec-
tion varies in the context of LASSO and we will show on 4 data sets that it will indeed
yield more stable results (in the sense of Φ̂(Z)) than its non-ensemble version (LASSO).
Nevertheless, we remind the reader that these experiments are purely illustrative of the
concepts discussed in the paper and do not claim to be an exhaustive empirical study. Sta-
bility selection possesses 3 hyperparameters12: (1) the cut-off value πthr, (2) the average
number of features selected qΛ over the all values of λ ∈ Λ and (3) the set of regularizing
parameters Λ (where the two last hyperparameters are dependent). We used the values
suggested by the original authors: that is πthr ∈ (0.6 − 0.9) and qΛ around

√
0.8d. Figure

12 compares the two approaches for variable selection in 4 data sets, three binary clas-
sification problems (Spambase/Sonar/Madelon) and one regression (Boston housing). To
derive the 95%-interval estimate of stability, we ran the algorithms on M = 100 bootstraps,
and used the tools presented in Section 4.2.3. The first observation is that, no matter the
parametrisation, the average stability of stability selection is always higher than the sta-
bility of LASSO. Furthermore, we performed hypothesis tests at a level of significance of
5% to check for which hyperparameters Stability Selection achieved higher stability than
LASSO. A green tick indicates where the null hypothesis (equal stability) was rejected. On
the Sonar and Madelon data sets, the stability of Stability Selection is consistently higher
than LASSO, but can present high variability for some hyperparameters (as shown by the
large confidence intervals). In those cases, it failed to reject the null hypothesis. These
experiments highlight the importance of statistical significance when quantifying stability
and the need for such statistical tools.

12. We note that the first two hyperparameters listed hereafter effectively control the upper bound on the
amount of false positives.
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(a) Spambase (b) Boston housing

(c) Sonar (d) Madelon

Figure 12: Comparing the stability of LASSO and different parametrisations of Stability
Selection in four classification/regression data sets. For LASSO (red star),
we optimised the regularisation parameter using 10-fold cross validation and
the one-standard-error rule—picking up the most parsimonious model within
one standard error of the minimum (Hastie et al., 2009). For stability selec-
tion (black circle), we explored different parameters: for the cut-off thresh-
old πthr ∈ {0.60, 0.90}, while for the average number of selected variable
qΛ ∈ {qD, 1.5qD, 2qD}, where qD =

√
0.8d is the default value. We performed

hypothesis tests to check whether the stability of Stability Selection is signifi-
cantly different from LASSO. The green tick means that the null hypothesis (i.e.
the population stabilities are equal) has been rejected at level of significance 5%.
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7. Conclusions and Future Work

In this section, we present the conclusions and then consider possible areas of future work.

7.1 Conclusions

We have provided a rigorous statistical treatment for the concept of stability in feature
selection. Following a property-based approach suggested in previous works, we identified
a set of 5 properties—and argued for them as desirable in most (if not all) scenarios. Then,
we compared all existing stability measures in terms of properties. It emerged that no
existing measure satisfied all desirable properties—to counter this, we constructed a novel
measure, Definition 4. This turns out to be a generalization of several existing measures,
and possesses all 5 properties. In addition, it provides new capabilities, not previously
possible in the literature. We provided confidence intervals and hypothesis testing of true
stability, and finally, we showed how these tools could be used to choose hyperparameters.
An important conclusion is that optimizing stability can be potentially achieved without
significant loss of accuracy, and can help identifying the true underlying set of features.

7.2 Future Work

In some data scenarios, the user might not want to measure the instability due to the
redundancy of the features. In that scenario, the user is more interested in knowing whether
features belonging to a same group of correlated features have been consistently selected,
rather than looking at the selection of each feature independently. For this purpose, stability
measures taking into account feature redundancy have been proposed in the literature. The
relative POG (also called POGR) and the relative nPOG (also called nPOGR) are both
extensions of the POG measure and of the nPOG measure respectively (Zhang et al., 2009)
as they both reduce to their original version in the case of no redundancy. This case study
is not in the scope of this paper. Nevertheless, we note that since they reduce to POG
and nPOG, these two measures will also not possess the 5 properties. Future work might
consider extending the measure we propose to take redundancy into account.

Another avenue of investigation could be the extension of the present work to other
types of feature selection outputs—such as feature rankings or feature weights. A popular
measure to quantify the stability of feature rankings is the pairwise Spearman’s Rho. In
the case of untied ranks, Nogueira et al. (2017) show that this measure can be re-written as

1−
1
d

∑d
f=1 s

2
f

Vrank
,

where s2
f is the sample variance of the rank of feature Xf and where Vrank is the expected

variance under the assumption that each ranking was generated at random (i.e. each ranking
is equally likely). The above equation has a similar form to the measure proposed in
this paper and provides a promising direction for unifying stability of ranking and subset
selection.
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Appendix A. Existing Stability Measures

In the remainder of the appendices, we will add a subscript to the stability Φ̂ giving the
author or the name of the measure for disambiguation. Whenever the subscript is omitted,
we refer to our proposed stability measure as given by Definition 4.

In this section, we first review the existing similarity-based stability measures and then
we focus on the frequency-based ones.

A.1 Similarity-based Measures

We remind the reader that given a similarity measure φ between two feature sets si and sj ,
the resulting stability Φ̂(Z) is taken as the average pairwise similarities between the feature
sets in Z, that is

Φ̂(Z) =
1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

φ(si, sj).

For simplicity, we introduce notations that will be used in the remainder of the appendices.
Let ri,j be the short notation for |si∩ sj |, the size of the intersection between feature sets si
and sj . Let ki denote the size of feature set si (when the size of the feature set is assumed
constant, we will simply denote it k). Table 6 provides all 9 similarity measures used in the
literature in the context of stability along with their minimum and maximum value. These
definitions will be later used in the proof of properties in Appendix C.

A.2 Frequency-based Measures

In this section, we give the definitions of the frequency-based measures. As these require
to introduce a lot of new notations, we do not summarize them in a table like we did for
similarity-based measures.

A.2.1 Goh’s Measure

Goh and Wong (2016) propose to use the frequency of selection, averaged over all features,
that is Φ̂Goh(Z) = 1

d

∑d
f=1 p̂f . This measure take values in [0, 1].
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First used in Name Measure [min,max]

Dunne et al. (2002) Hamming 1− |si\sj |+|si\sj |d [0, 1]

Kalousis et al. (2005) Jaccard
ri,j
|si∪sj | [0, 1]

Yu et al. (2008) Dice-Sørenson
2ri,j
ki+kj

[0, 1]

Zucknick et al. (2008) Ochiai
ri,j√
kikj

[0, 1]

Shi et al. (2006) POG
ri,j
ki

[0, 1]

Kuncheva (2007) Consistency
ri,j− k

2

d

k− k2

d

[−1, 1]

Lustgarten et al. (2009) Lustgarten
ri,j−

kikj
d

min(ki,kj)−max(0,ki+kj−d) [−1, 1]

Wald et al. (2013) Wald
ri,j−

kikj
d

min(ki,kj)−
kikj
d

[1− d, 1]

Zhang et al. (2009) nPOG
ri,j−

kikj
d

ki−
kikj
d

[1− d, 1]

Table 6: Similarity measures proposed in the literature 2002–2018, using the pairwise for-
mulation. In some cases the measure is extremely simple, (e.g. percentage overlap
of features) and authors are chosen simply as the first known usage of the measures
in the context of stability. We note that as opposed as what can be found in some
literature (Alelyani, 2013; P. and Perumal, 2016), the minimum for Wald’s and
nPOG similarity measures is equal to 1− d and not 0 (and is reached for ki = 1,
kj = d− 1 and ri,j = 0).

A.2.2 Davis’ Measure

Davis et al. (2006, pg2) penalize the frequency to “account for the artificial increase in
stability that occurs with increasingly long gene signatures”, as follows

Φ̂Davis(Z) = max

0,
1

F

d∑
f=1

p̂f − α
median(k1, ..., kM )

d

 , (3)
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where F is the number of features selected at least in one of the M feature sets (in other
words, F = | ∪i∈{1,...,M} si|) and where α is a hyperparameter chosen by the user. This
measure also takes values in the interval [0, 1].

A.2.3 Krizek’s Measure

Kŕızek et al. (2007) treat each possible of the
(
d
k

)
feature sets of k features as a random

variable and estimate its Shannon entropy as

Φ̂Krizek(Z) = −
∑
si∈Z

p̂(si) log2 p̂(si),

where p̂(si) is the frequency of occurrence of subset si in Z over all the
(
d
k

)
possible combi-

nations of k features taken amongst d features. It takes values in
[
0, log(min(M,

(
d
k

)
))
]
.

A.2.4 Guzmán’s Measure

A measure is proposed by Guzmán-Mart́ınez and Alaiz-Rodŕıguez (2011), using frequen-
cies to compute Jensen-Shannon divergences. Originally created for feature rankings, they
extend it to feature sets of k features (top-k lists of genes in the literature), using the
JS-divergence, as follows

Φ̂(Z) = 1− DJS(q1, ...,qM )

D∗JS(q1, ...,qM )
.

Here, each qi is a distribution over features, formed by taking the bitstring on the ith row
of the matrix Z, and dividing through by k, the number of bits set. D∗JS is a normalizing
term—according to the authors “the divergence value for a [feature set] that is completely
random”. This ensures the value is in [0, 1], but most interestingly, this is yet another work
correcting the measure for chance, as introduced by Kuncheva.

A.2.5 Relative Weighted Consistency CWrel

With a property-based analysis, Somol and Novovičová (2010) constructed a new stability
measure called the relative weighted consistency (CWrel) as

Φ̂(Z) =
d
(
Mk̄ −D +

∑d
f=1Mp̂f (Mp̂f − 1)

)
− (Mk̄)2 +D2

d
(
H2 +M(Mk̄ −H)−D

)
− (Mk̄)2 +D2

, (4)

where D = (Mk̄) mod d and H = (Mk̄) mod M .

A.2.6 Lausser’s Measure

Finally, Lausser et al. (2013) proposed a measure for feature sets of fixed size k as follows:

Φ̂(Z) =
1

M2k

M∑
i=1

i2a(i),

where a(i) =
∑d

f=1 1{
∑M

j=1 zj,f = i} is the number of features selected exactly i times.
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Appendix B. Proof of Theorems

In this section, we provide the proofs or proof sketches for the theorems and corollaries in
the paper. Before we proceed to the proofs, we give the following equation, that will be
repeatedly used in the proofs

d∑
f=1

p̂f =
1

M

M∑
i=1

d∑
f=1

zi,f =
1

M

M∑
i=1

ki = k̄. (5)

B.1 Proof of Theorem 1

In this appendix we prove the following theorem from Section 3.
Theorem 1 The average pairwise intersection between the M feature sets is as a linear
function of the sample variances of the selection of each feature, as follows

1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

ri,j = k̄ −
d∑

f=1

s2
f , (6)

where s2
f = M

M−1 p̂f (1− p̂f ) is the sample variance of the selection of the f th feature.
Proof. To prove Theorem 1, we start by calculating the average pairwise size of the
intersection and show that we get the results presented.

1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

ri,j =
1

M(M − 1)

M∑
i=1

M∑
j=1

ri,j −
1

M(M − 1)

M∑
i=1

ri,i

=
1

M(M − 1)

M∑
i=1

M∑
j=1

ri,j −
1

M(M − 1)

M∑
i=1

ki

=
1

M(M − 1)

M∑
i=1

M∑
j=1

ri,j −
1

M − 1
k̄

Since the ith feature set Z(i,:) and the jth feature set Z(j,:) are binary vectors, the size of
their intersection ri,j is the number of 1s occurring at the same position in both vectors. In

other words, ri,j is the dot product of the two feature sets, that is Z(i,:)·Z(j,:) =
∑d

f=1 zi,fzj,f .
By substituting in the previous equation, we get

1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

ri,j =
1

M(M − 1)

M∑
i=1

M∑
j=1

d∑
f=1

zi,fzj,f −
1

M − 1
k̄

=
1

M(M − 1)

d∑
f=1

(
M∑
i=1

zi,f

) M∑
j=1

zj,f

− 1

M − 1
k̄

=
1

M(M − 1)

d∑
f=1

(
M∑
i=1

zi,f

)2

− 1

M − 1
k̄
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=
1

M(M − 1)

d∑
f=1

(Mp̂f )2 − 1

M − 1
k̄

=
M

M − 1

d∑
f=1

(
p̂2
f − p̂f + p̂f

)
− 1

M − 1
k̄

=
M

M − 1

d∑
f=1

−p̂f (1− p̂f ) +
M

M − 1

d∑
f=1

p̂f −
1

M − 1
k̄

= − M

M − 1

d∑
f=1

p̂f (1− p̂f ) +
M

M − 1
k̄ − 1

M − 1
k̄

= k̄ −
d∑

f=1

s2
f .

B.2 Proof of Theorem 3

In this appendix we prove the following theorem from Section 4.1.
Theorem 3 Under the Null Model of Feature Selection H0, for all f , the expected value of

the sample variance of Zf is E
[
s2
f |H0

]
= k̄

d

(
1− k̄

d

)
.

Proof. Since s2
f is the unbiased sample variance of the Bernoulli variable Zf , we have

E
[
s2
f |H0

]
= V ar[Zf |H0], which is the value of pf (1− pf ) under the Null Model of Feature

Selection H0.

To calculate pf under H0, we will start by carrying out the calculations on a simple
example to clarify what is the sample space we are looking at under H0. Let us assume we
observe the matrix

Z =

(
1 0 0
1 1 0

)
.

By definition, under H0, for each row i, all permutations of the bit-string on row i are
equally likely. For the first row, we have 3 possible permutations that are 100, 010, 001 and
for the second row, we also have 3 possible permutations that are 110, 101, 011. Therefore,
under H0, all the N = 3× 3 = 9 following matrices are equally likely to be observed:

(
1 0 0
1 1 0

)
,(

1 0 0
1 0 1

)
,(

1 0 0
0 1 1

)
,

(
0 1 0
1 1 0

)
,(

0 1 0
1 0 1

)
,(

0 1 0
0 1 1

)
,

(
0 0 1
1 1 0

)
,(

0 0 1
1 0 1

)
,(

0 0 1
0 1 1

)
.
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Since all these matrices are equally likely to be observed under H0, to calculate pf , we
can simply count the proportion of times feature Zf equals 1 over the MN = 2 × 9 = 18
rows. Here we would get pf = 9

18 = 1
2 for any f .

Let N be the total number of possible matrices under H0. In the more general case, to
compute pf under H0, we can count the proportion of times Zf = 1 over the MN rows.
We can decompose this into a sum over the row numbers as follows:

pf = Pr[Zf = 1|H0] =

∑M
i=1N × Pr[Zf = 1|on row i , H0]

MN

pf =
1

M

M∑
i=1

Pr[Zf = 1|on row i , H0], (7)

where Pr[Zf = 1|on row i , H0] is the proportion of times Zf is equal to 1 on all the per-
mutations of the ith row of Z. Since the ith row of Z has ki bits set to 1, this is equal
to

#{bit-strings with ki 1s where Zf = 1}
#{bit-strings with ki 1s}

.

The denominator is equal to
(
d
ki

)
. For the numerator, we know Xf is set equal to 1, which

means we have now ki − 1 bits left to set to 1 from the remaining d− 1 bits. Therefore the
numerator is equal to

(
d−1
ki−1

)
. Replacing these in the previous equation, we get that on the

ith row, all features have an equal probability of being selected equal to
( d−1
ki−1)

( dki)
= ki

d . Now,

replacing this in Equation (7), we get that under H0,

pf =
1

M

M∑
i=1

ki
d

=
k̄

d
.

We can verify this in our previous example, where we had k1 = 2, k2 = 1, d = 3, which
gives pf = k̄

d = 1
2 as computed previously.

Using this, we can now compute E
[
s2
f |H0

]
= V ar[Zf |H0] = pf (1− pf ) = k̄

d

(
1− k̄

d

)
.

B.3 Proof of Theorem 5

In this appendix we prove the following theorem from Section 4.1.
Theorem 5 When the number of features selected is constant:

• The stability estimator Φ̂ is equal to the stability measures derived by Kuncheva (2007),
Wald et al. (2013) and to nPOG (Zhang et al., 2009).

• The stability estimator Φ̂ and CWrel (Somol and Novovičová, 2010) are asymptotically
equivalent.

Proof. First, we show that when the number of features selected is constant equal to k,
then Kuncheva’s measure is equal to the proposed stability measure. The stability measure
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defined by Kuncheva (2007) is

Φ̂Kuncheva(Z) =
1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

ri,j − k2

d

k − k2

d

=
1

M(M − 1)

 M∑
i=1

M∑
j=1
j 6=i

ri,j

k − k2

d

− k2

d

k − k2

d

=
1

k − k2

d

 1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

ri,j

− k2

d

k − k2

d

.

Using Theorem 1, we can replace the term between parenthesis in the latter equation by
k −

∑d
f=1 s

2
f (since the number of features selected is constant, k̄ = k). We get that

Φ̂Kuncheva(Z) =
1

k − k2

d

k − d∑
f=1

s2
f

− k2

d

k − k2

d

=
k − k2

d

k − k2

d

−
∑d

f=1 s
2
f

k − k2

d

= 1−
1
d

∑d
f=1 s

2
f

k
d

(
1− k

d

) ,
which is our proposed stability measure for k̄ = k. Then, using the definitions of Wald
and nPOG measures given in Table 6, by replacing the cardinalities of the sets by k in the
equations, they reduce to Kuncheva’s measure, which proves the first part of the theorem.

We now prove the equivalence of our measure with CWrel. Using Equation (4), we can
rewrite CWrel as

Φ̂CWrel
(Z) =

−1
d
M−1
M

∑d
f=1 s

2
f + k̄

d

(
1− k̄

d

)
− D

M2d

(
1− D

d

)
k̄
d

(
1− k̄

d

)
− D

M2d

(
1− D

d

)
+ H2

dM2 − H
Md

. (8)

Assuming that the number of features selected is constant equal to k, we then have that
k̄ = k and hence that H = (Mk) mod M = 0. Therefore the above equation becomes

Φ̂CWrel
(Z) = 1−

M−1
M

∑d
f=1 s

2
f

k
(
1− k

d

)
− D

M2

(
1− D

d

) .
We have that D = (Mk) mod d which implies that D is a constant number between 0 and
d−1. Therefore the limit of the term D

M2

(
1− D

d

)
as M approaches infinity is 0. Therefore,

taking the limit of the above equation, we get

lim
M→∞

Φ̂CWrel
(Z) = lim

M→∞

[
1−

M−1
M

∑d
f=1 s

2
f

k
(
1− k

d

) ]
= lim

M→∞
Φ̂(Z).

This shows that lim
M→+∞

Φ̂CWrel (Z)

Φ̂(Z)
= 1 and therefore we obtain that Φ̂CWrel

(Z) ∼
M→+∞

Φ̂(Z),

which is what we wanted to prove.

B.4 Proof of Theorem 6

In this appendix we prove the following theorem from Section 4.2.1.
Theorem 6 When there are only two categories (0/1), Fleiss’ Kappa is equal to Φ̂(Z).
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Proof. To prove this, we start from the definition of Fleiss’ Kappa as given in the original
paper (Fleiss, 1971) and show that when the number of categories is equal to 2, it reduces
to the proposed definition of stability (c.f. Definition 4). Fleiss (1971) defines Kappa as

κ =
P̄ − P̄e
1− P̄e

, (9)

where:

• P̄e =
∑q

j=1 p
2
j in which

– q = 2 is the number of categories;

– pj = 1
Md

∑d
f=1 nfj ;

– nfj is the number of samples that assign f to the jth category. Therefore, in our
case, we have nf1 = Mp̂f and nf0 = M −Mp̂f .

• P̄ = 1
dM(M−1)

∑d
f=1

∑q
j=1 nfj(nfj − 1).

Now we can re-write this using our notation. First, we have that

• p1 = 1
Md

∑d
f=1 nf1 = 1

Md

∑d
f=1Mp̂f = 1

d

∑d
f=1 p̂f = k̄

d ;

• p0 = 1
Md

∑d
f=1 nf0 = 1

Md

∑d
f=1(M −Mp̂f ) = 1− 1

d

∑d
f=1 p̂f = 1− k̄

d .

Therefore,

P̄e = p2
0 + p2

1 =
k̄2

d2
+

(
1− k̄

d

)2

=
k̄2

d2
+ 1− 2

k̄

d
+
k̄2

d2
= 1− 2

k̄

d

(
1− k̄

d

)
.

Let us now calculate P̄ .

P̄ =
1

dM(M − 1)

d∑
f=1

q∑
j=1

nfj(nfj − 1)

P̄ =
1

dM(M − 1)

d∑
f=1

(nf0(nf0 − 1) + nf1(nf1 − 1))

P̄ =
1

dM(M − 1)

d∑
f=1

((M −Mp̂f )(M −Mp̂f − 1) +Mp̂f (Mp̂f − 1))

P̄ = 1− 2

d

d∑
f=1

M

M − 1
p̂f (1− p̂f ) = 1− 2

d

d∑
f=1

s2
f .

Now, substituting the two last equations back into Equation (9), we finally get that

κ =
1− 2

d

∑d
f=1 s

2
f − 1 + 2 k̄d

(
1− k̄

d

)
1− 1 + 2 k̄d

(
1− k̄

d

) =
−1
d

∑d
f=1 s

2
f + k̄

d

(
1− k̄

d

)
k̄
d

(
1− k̄

d

)
κ = 1−

1
d

∑d
f=1 s

2
f

k̄
d

(
1− k̄

d

) = Φ̂(Z),

which is what we wanted to prove.
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B.5 Proof of Theorem 7

Theorem 7 (Asymptotic Distribution) As M → ∞, the statistic Φ̂ weakly converges
to a normal distribution:

VM =
Φ̂− Φ√
v(Φ̂)

L−→ N (0, 1),

where:

• Φ = 1−
1
d

∑d
f=1 pf (1−pf )

p̄(1−p̄) is the mean of the estimator Φ̂ in which p̄ = 1
d

∑d
f=1 pf is the

average mean parameter of the d Bernoulli variables;

• v(Φ̂) = 4
M2

∑M
i=1(Φ̂(i) − ˆ̄Φ(.))

2 is an estimate of the variance of Φ̂ in which:

– Φ̂(i) = 1
k̄
d

(
1− k̄

d

) [1
d

∑d
f=1 zi,f p̂f −

kik̄
d2 + Φ̂

2

(
2k̄ki
d2 − ki

d −
k̄
d + 1

)]
;

– and ˆ̄Φ(.) is the average value of Φ̂(i), that is: 1
M

∑M
i=1 Φ̂(i).

Proof. We prove this using Theorem 6 showing the equality between our proposed measure
and Fleiss’ Kappa and the work of Gwet (2008) that derives the asymptotic distribution of
Fleiss’ Kappa, as explained in the first paragraph of Section 4.2.2.

B.6 Proof of Theorem 9

In this appendix we prove the following theorem from Section 4.2.4.
Theorem 9 The test statistic for comparing stabilities is

TM =
Φ̂(Z2)− Φ̂(Z1)√

v(Φ̂(Z1)) + v(Φ̂(Z2))
.

Under H0, the statistic TM asymptotically (as M approaches infinity) follows a standard
normal distribution.
Proof. We know from Theorem 7 that Φ̂(Z1) is asymptotically normal with unknown
mean Φ1 and variance σ2

1 and that Φ̂(Z2) is asymptotically normal with unknown mean
Φ2 and variance σ2

2. Therefore, the difference Φ̂(Z2) − Φ̂(Z1) is normal with unknown
mean Φ2 − Φ1 and with variance σ2

1 + σ2
2. Under H0, Φ2 − Φ1 = 0 and we estimate this

variance by v(Φ̂(Z1))+v(Φ̂(Z2)) using the result of Theorem 7. This gives us the asymptotic
distribution of the statistic TM .

Appendix C. Proof of Properties

In this section, for each one of the 5 properties given in Section 3, we determine which
measures possess the property.

C.1 First property: Fully defined

This property directly follows from the definitions of the stability measures given Appendix
A. Kuncheva’s, Kŕızek’s, Guzmán’s and Lausser’s measures are only defined when the num-
ber of features selected is fixed, and therefore do not possess this property.
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C.2 Second property: Monotonicity

Since the proofs will all be similar for similarity-based measures, we first provide the proofs
for the similarity based measures and then we look at frequency-based ones.

C.2.1 Similarity-based Measures

We start by calculating the derivative for each one of the 9 the similarity measures and
provide the results in Table 7. As we can see, for all 9 similarity measures, assuming that

the cardinalities of the feature sets are always in {1, .., d − 1}, we have that
dφ(si,sj)
dri,j

> 0

(some derivatives are undefined otherwise, which correspond to the limit cases where no
features are selected or all the features are selected). Therefore the derivative of the stability
measure Φ̂(Z) will be positive since

dΦ̂(Z)

d

(∑M
i=1

∑M
j=1
j 6=i

ri,j

) =
1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

∂φ(si, sj)

∂ri,j

and since a sum of strictly positive quantities is strictly positive. Therefore, all similarity-
based stability measures have the Monotonicity property.

Hamming Jaccard Dice Ochiai POG
dφ(si,sj)
dri,j

2
d

ki+kj
(ki+kj−ri,j)2

2
ki+kj

1√
kikj

1
ki

Kuncheva Lustgarten Wald nPOG
dφ(si,sj)
dri,j

1

k− k2

d

1
min(ki,kj)−max(0,ki+kj−d)

1

min(ki,kj)−
kikj
d

1

ki−
kikj
d

Table 7: Derivatives for each one of the similarity measures.

C.2.2 Goh’s Measure

Using the definition of Goh’s measure (c.f. Appendix A.2) and Equation (5), we have that

Φ̂Goh(Z) =
1

d

d∑
f=1

p̂f =
k̄

d
. (10)

This is not a function of the variances of selection of each feature s2
f , therefore the measure

does not have the Monotonicity property.

C.2.3 Davis’ Measure

When α = 0, this measure reduces to Goh’s measure, which does not possess the property.
Therefore this measure does not possess the Monotonicity property either.

C.2.4 Kŕızek’s Measure

To prove that this measure does not possess the Monotonicity property, we give a counter-
example. Let us assume we have a procedure that selects k = 2 features out of d = 4
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features in total. The two binary matrices Z1 and Z2 illustrate two different scenarios with
M = 4 as follows

Z1 =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 and Z2 =


1 0 1 0
1 0 1 0
0 0 1 1
0 0 1 1

 .
Using Kŕızek’s measure, we get a stability of 1 for both Z1 and Z2 (using log base 2). Now
by computing the sum of variances of selection of the 4 features for the two test cases, we
get

∑4
f=1 s

2
f = 4

3 for Z1 and
∑4

f=1 s
2
f = 2

3 for Z2. Therefore Z1 and Z2 have the same
stability value but different sums of variance, which is a counter-example of the property.

C.2.5 Guzmán’s Measure

Before proving this, we re-write Guzmán’s measure using our notation (this re-writing will
also be useful for later proofs). For feature sets of fixed cardinality k, the stability is defined
by Guzmán-Mart́ınez and Alaiz-Rodŕıguez (2011) as

Φ̂Guzman(Z) = 1− DJS(q1, ...,qM )

D∗JS(q1, ...,qM )
,

where:

• D∗JS(q1, ...,qM ) = log d
k ;

• DJS(q1, ...,qM ) = 1
M

∑M
i=1

∑d
f=1 qf,i log

qf,i
q̄f

;

• qf,i = 1
k if the f th feature is selected on the ith run and 0 otherwise;

• q̄f = 1
M

∑M
i=1 qf,i.

Therefore, using our notation, we get that qf,i = zi,f
1
k and that q̄f = 1

M
1
k

∑M
i=1 zi,f =

p̂f
k .

Therefore,

Φ̂Guzman(Z) =1−
1
kM

∑M
i=1

∑d
f=1 zi,f log

zi,f
p̂f

log d
k

Φ̂Guzman(Z) =1−
1
kM

∑M
i=1

∑d
f=1 zi,f log zi,f

log d
k

+
1
kM

∑M
i=1

∑d
f=1 zi,f log p̂f

log d
k

Φ̂Guzman(Z) =1−
1
kM

∑M
i=1

∑d
f=1 zi,f log zi,f

log d
k

+
1
k

∑d
f=1 p̂f log p̂f

log d
k

.

Since zi,f is binary, zi,f log zi,f = 0. Therefore, the previous equation becomes

Φ̂Guzman(Z) = 1 +
1
k

∑d
f=1 p̂f log p̂f

log d
k

= 1−
1
d

∑d
f=1 p̂f log p̂f
k
d log k

d

. (11)

Now, to prove that this measure does not have the Monotonicity property, we will give a
counter-example. Let Z1 and Z2 be the two following binary matrices
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Z1 =


1 0 0 1 0
0 1 0 1 0
0 0 0 1 1
0 0 1 1 0

 and Z2 =


1 0 0 1 0
0 1 0 1 0
1 0 1 0 0
0 1 0 1 0

 .

We show that using Guzmán’s measure, Z1 has a lower stability than Z2 but also a lower
average variance, thus violating the Monotonicity property. Indeed, we have Φ̂Guzman(Z1) '
0.24 and Φ̂Guzman(Z2) ' 0.31 while we have a sum of variances ' 0.15 for Z1 and ' 0.17
for Z2.

C.2.6 Relative Weighted Consistency CWrel

Since H, D and k̄ only depend on the feature set cardinalities k1, ..., kM , on M and on d,
we can see from Equation (8) that Φ̂CWrel

(Z) is a linear and strictly decreasing function of
s2
f . Therefore, CWrel possesses the Monotonicity property.

C.2.7 Lausser’s measure

Similarly to what has been done for Guzmán’s measure, we will re-write this measure as
a function of the frequencies of selection p̂f . This will help us understand the measure
and also will be useful for other proofs involving this measure. We remind the reader that
Lausser’s measure is defined as

Φ̂Lausser(Z) =
1

M2k

d∑
f=1

M∑
i=1

i21{
M∑
j=1

zj,f = i} =
1

M2k

d∑
f=1

[
M∑
i=1

i21{Mp̂f = i}

]
.

Let us look at the term in between brackets that depends on the row index i. We note that
the indicator term 1{Mp̂f = i} is equal to 1 only when i is equal to Mp̂f and is equal to
0 for any other value of i in {1, ...,M}. Therefore we can make the sum over i disappear
since it is always equal to (Mp̂f )2. Hence, Lausser’s Measure can be re-written as

Φ̂Lausser(Z) =
1

M2k

d∑
f=1

(Mp̂f )2 =
1

k

d∑
f=1

p̂2
f . (12)

This simple expression helps us understand what is this measure actually measuring. Let us
now show that this is a strictly decreasing function of the sum of variances

∑d
f=1 p̂f (1− p̂f ).

We can re-write the sum of variances as follows

M − 1

M

d∑
f=1

s2
f =

d∑
f=1

p̂f (1− p̂f ) =
d∑

f=1

p̂f −
d∑

f=1

p̂2
f = k −

d∑
f=1

p̂2
f = k(1− Φ̂Lausser(Z)).

Therefore, Lausser’s measure has the Monotonicity property.

C.3 Third property: Bounds

In this section, we verify which measures have the Bounds property as given by Table 1.
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C.3.1 Similarity-based measures

If a similarity measure φ is bounded, i.e. if ∃(a, b) ∈ R2, a ≤ φ ≤ b, then it follows that the
corresponding stability measure will also be bounded. Indeed:

a ≤ φ ≤ b ⇒ a ≤ 1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

φ(si, sj) ≤ b ⇒ a ≤ Φ̂(Z) ≤ b.

As given in Table 6, we can see that all similarity measures except Wald’s measure (Wald
et al., 2013) and nPOG measure (Zhang et al., 2009) are bounded. Therefore, we know
that their corresponding stability measures will also be bounded.

The contrary is not necessarily true. If a similarity measure is not bounded, this does
not imply that the corresponding stability measure is not bounded. Nevertheless, we prove
that the stability measures using Wald’s and nPOG similarity measures are not bounded
using a counter-example. Let us assume we have the following scenario

Z =



1 1 1 1 ... 1 0
...

1 1 1 1 ... 1 0
0 0 0 0 ... 0 1

...
0 0 0 0 ... 0 1


,

where the first M
2 feature sets are all identical and select the first d − 1 features and the

M
2 following ones are also identical but only select the first feature. In this situation, using

Wald’s similarity, the first block will give M
2

(
M
2 − 1

)
similarities of 1 (as all feature sets

in the first block are identical), the second block of feature sets will also give M
2

(
M
2 − 1

)
similarities of 1 as all feature sets in the second block are also identical. Then the M2

2
remaining pairs of feature sets (coming from the inter block pairs) have an intersection
ri,j = 0 and therefore a similarity equal to

0− d−1
d

1− d−1
d

=
1− d

d− d+ 1
= 1− d.

So overall, the stability using Wald’s similarity measure is equal to

Φ̂Wald(Z) =
1

M(M − 1)

[
2
M

2

(
M

2
− 1

)
+
M2

2
(1− d)

]
=

M
2 − 1

M − 1
+

M

2(M − 1)
(1− d).

We can see that that the value of the stability decreases with d. Therefore, we can conclude
that Wald’s stability measure is not bounded by constants. Using the same scenario, we
can similarly show that the nPOG measure is not bounded.

C.3.2 Frequency-based measures

The range of values of all the frequency-based measures are given in the literature and
recapitulated in Appendix A.2. Kŕızek’s measure has a maximum depending on M , d and
k and therefore is not bounded. All five other frequency measures (CWrel, Davis’ and Goh’s
measures) take values in [0, 1] and therefore are bounded.
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C.4 Fourth Property: Maximum

In this section, we show which one of the stability measures possess the Maximum property,
as given in Table 1.

C.4.1 Similarity-based Measures

For the backward implication (Deterministic Selection→Maximum Stability), let us assume
that all the feature sets in Z are identical with cardinality k, therefore |si ∩ sj | = ri,j = k.
By definition, for all similarity measures given in Table 1 except Lustgarten’s measure, for
all i, j ∈ {1, ...,M}, φ(si, sj) = 1 which means that the average pairwise similarity is also
1. Therefore all similarity-based measures have this property except Lustgarten’s measure
(as it is shown with a counter-example in Figure 1b).

For the forward implication (Maximum Stability → Deterministic Selection), showing
that Wald’s stability measure does not have this property can easily be done with a counter-
example as done in the paper (c.f. Figure 1a). All other similarity-based stability measures
have a maximum equal to 1. Let us assume that Φ̂(Z) = max(Φ̂) = 1. We want to show
that this implies that all feature sets in Z are identical.

Φ̂(Z) = 1⇒ 1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

φ(si, sj) = 1

⇒
M∑
i=1

M∑
j=1
j 6=i

φ(si, sj) = M(M − 1)

⇒ ∀i ∈ {0, 1}d,∀j ∈ {0, 1}d, j 6= i, φ(si, sj) = 1.

Then using the constraint that ri,j is a natural number less or equal than min(ki, kj) (since
that is the maximal possible size of intersection between two sets of size ki and kj), it can be
shown for Jaccard, Dice, POG, nPOG and Kuncheva, that this implies that ki = kj = ri,j
which means that si = sj .

C.4.2 Goh’s Measure

Using Equation (10), we have that Φ̂Goh(Z) = k̄
d . Therefore, when all feature sets in Z

are identical, Φ̂Goh(Z) only reaches its maximal value of 1 if all features are selected (i.e.,
p̂f = 1 for all f ∈ {1, ..., d}). Therefore, this measure does not have the Maximum property.

C.4.3 Davis’ Measure

Taking α = 0, this measure is equal to Goh’s measure (seen in the previous section).
Therefore this stability measure does not have the Maximum property either.

C.4.4 Kŕızek’s Measure

Let us show that the property is true for Kŕızek’s stability measure. We note this measure
is the only one for which lower values correspond to a higher stability and the maximum
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stability is reached for a stability of 0.

Φ̂Krizek(Z) = 0⇔ −
∑
si∈Z

p̂(si) log2 p̂(si) = 0

⇔ ∀j ∈ {1, ...,
(
d

k

)
}, p̂(si) log2 p̂(si) = 0

⇔ ∀j ∈ {1, ...,
(
d

k

)
}, p̂(si) = 0 or p̂(si) = 1

⇔ All feature sets in Z are identical.

Therefore, Kŕızek’s measure has the Maximum property.

C.4.5 Relative Weighted Consistency CWrel

Using Equation (8), we have

Φ̂CWrel
(Z) = 1 ⇔

−1
d
M−1
M

∑d
f=1 s

2
f + k̄

d

(
1− k̄

d

)
− D

M2d

(
1− D

d

)
k̄
d

(
1− k̄

d

)
− D

M2d

(
1− D

d

)
+ H2

M2d
− H

Md

= 1

⇔
d∑

f=1

s2
f =

H

M − 1
− H2

M(M − 1)
.

When all feature sets in Z are identical, we have k̄ = k and therefore H = (Mk̄) mod M =
0. Therefore the right-hand side of the above equation is 0 and the left-hand side is also 0.
This proves that CWrel possesses the backward implication of the Maximum property.

The forward implication is not true. We give the following counter-example

Z =


1 1 0 0
1 1 0 0
1 1 1 0
1 1 1 0

 ,
It can easily be shown that Φ̂CWrel

(Z) = 1, even though all rows in Z are not identical.
Therefore CWrel does not have the Maximum property.

C.4.6 Lausser’s Measure

To prove that Lausser’s measure has this property, we will use the expression given in
Equation (12), that is

Φ̂Lausser(Z) =
1

k

d∑
f=1

p̂2
f .

Let us first assume that all feature sets in Z are identical. This implies that we will have
exactly k features for which the value of p̂f will be 1 and d− k features for which it will be

0. Hence in that case, Φ̂Lausser(Z) = 1. Now let us assume that the stability is equal to 1.
This means that we have

∑d
f=1 p̂

2
f = k. The only solution to that is when we have exactly

k features with a frequency of selection equal to 1 and the other features have a frequency
of selection equal to 0. Therefore Lausser’s measure possesses the Maximum property.
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C.5 Fifth Property: Correction for Chance

In order to prove the property of Correction for chance, we calculate the expected value of
Φ̂(Z) under the Null Model of Feature Selection H0 for each one of the existing stability

measures. If E
[
Φ̂(Z)|H0

]
is not constant (i.e. if it depends on parameters of the problem

like k or d), then it does not have this property.

C.5.1 Similarity-based Measures

It has been shown in the literature that under H0, the intersection follows a hypergeomet-
ric distribution with known expected value equal to E [ri,j |H0] =

kikj
d (Lustgarten et al.,

2009). Using the linearity of the expectation, we will have that E
[
Φ̂(Z)|H0

]
of the Nor-

malized Hamming distance, the Jaccard index, the Dice-Sørensen index, Ochiai index and
the POG measures will depend on ki, kj and d. Therefore, all these stability measures will
not have the property of Correction for chance. All other similarity measures will verify

E
[
Φ̂(Z)|H0

]
= 0 and will have the property of Correction for chance. We detail all calcu-

lations below.

For the Hamming similarity measure, we have

E
[
Φ̂Hamming(Z)|H0

]
= 1− 1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

ki + kj − E [ri,j |H0]

d

= 1− 1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

ki + kj − kikj
d

d

= 1− 1

M(M − 1)d

 M∑
i=1

M∑
j=1
j 6=i

ki +
M∑
i=1

M∑
j=1
j 6=i

kj −
M∑
i=1

M∑
j=1
j 6=i

kikj
d


= 1− 1

M(M − 1)d

M(M − 1)k̄ +M(M − 1)k̄ − 1

d

M∑
i=1

M∑
j=1
j 6=i

kikj


= 1− 2

k̄

d
+

1

M(M − 1)d2

M∑
i=1

M∑
j=1
j 6=i

kikj

= 1− 2
k̄

d
+

1

M(M − 1)d2

(
M2k̄2 −

M∑
i=1

k2
i

)

= 1− 2
k̄

d
+

M

M − 1

k̄2

d2
− 1

M(M − 1)

M∑
i=1

k2
i

d2
.

In particular, when the number of features selected is constant equal to k, the above equa-
tion becomes 1− 2kd

(
1− k

d

)
, which depends on k and d. Therefore, this measure measure
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does not have the Correction-for-chance property.

For the Jaccard similarity measure, we have

E
[
Φ̂Jaccard(Z)|H0

]
=

1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

E
[

ri,j
ki + kj − ri,j

|H0

]

=
1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

d∑
n=1

n

ki + kj − n
P(ri,j = n|H0).

Since we know that under H0, the intersection ri,j follows a central hypergeometric distri-
bution, we have that

P(ri,j = n|H0) =

(
ki
n

)(
d−ki
kj−n

)(
d
kj

) .

Therefore, the expected value of the average pairwise Jaccard index under the Null Model
of Feature Selection H0 is

E
[
Φ̂Jaccard(Z)|H0

]
=

1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

d∑
n=1

n

ki + kj − n

(
ki
n

)(
d−ki
kj−n

)(
d
kj

) .

In particular, when the number of features selected is constant equal to k, the above equa-

tion becomes
∑d

n=1
n

2k−n
(kn)(

d−k
k−n)

(dk)
, which depends on k and d. Therefore this measure does

not have the Correction-for-chance property.

For the Dice coefficient, we have

E
[
Φ̂Dice(Z)|H0

]
=

1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

2E [ri,j |H0]

ki + kj
=

2

M(M − 1)d

M∑
i=1

M∑
j=1
j 6=i

kikj
ki + kj

.

In particular, when the number of features selected is constant equal to k, the above equa-
tion becomes k

d , which depends on k and d. Therefore this measure does not have the
Correction-for-chance property.

For Ochiai’s index, we have

E
[
Φ̂Ochiai(Z)|H0

]
=

1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

E [ri,j |H0]√
kikj

=
1

M(M − 1)d

M∑
i=1

M∑
j=1
j 6=i

kikj√
kikj

=
1

M(M − 1)d

M∑
i=1

M∑
j=1
j 6=i

√
kikj = − 1

M − 1

k̄

d
+

1

M(M − 1)

(
M∑
i=1

√
ki
d

)2

.
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In particular, when the number of features selected is constant equal to k, the above equa-
tion becomes k

d , which depends on k and d. Therefore this measure does not have the
Correction-for-chance property.

For POG measure, we use its symmetrical version equal to
ri,j
2ki

+
ri,j
2kj

to carry out

calculations. This results in the same stability value.

E
[
Φ̂POG(Z)|H0

]
=

1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

(
E [ri,j |H0]

2ki
+

E [ri,j |H0]

2kj

)

=
1

M(M − 1)

M∑
i=1

M∑
j=1
j 6=i

(
kikj
2dki

+
kikj
2dkj

)
=
k̄

d
,

which depends on the number of feature selected and d. Therefore this measure does not
have the Correction-for-chance property.

C.5.2 Frequency-based Measures

We showed in the proof of Theorem 3 (c.f. Appendix B.2), that under the Null Model of

Feature Selection H0, that pf was equal to k̄
d . Therefore, E [p̂f |H0] = pf = k̄

d . This will be
used repeatedly in the proofs below.

For Goh’s measure, since we have Φ̂Goh(Z) = k̄
d (c.f. Equation 10), this gives E

[
Φ̂Goh(Z)|H0

]
=

Φ̂Goh(Z) = k̄
d , which is not constant. Therefore this measure does not have the property.

For Davis’ Measure, we have E
[
Φ̂Davis(Z)|H0

]
= Φ̂Davis(Z) as well. Therefore this

measure does not have the Correction-for-chance property.

For Kŕızek’s Measure, when the feature selection procedure is randomly selecting feature
sets of cardinality k, the expected value of the frequency of occurrence of a feature set is
equal to 1

(dk)
. Therefore

E
[
Φ̂Krizek(Z)|H0

]
= −

(dk)∑
j=1

1(
d
k

) log
1(
d
k

) = − log
1(
d
k

) = log

(
d

k

)
.

Therefore Kŕızek’s measure is not corrected for chance.

For Guzmán-Martinez’s Measure, the stability measure is said to “take the value zero
for completely random rankings” (Guzmán-Mart́ınez and Alaiz-Rodŕıguez, 2011, pg 602), so
we expect this measure to possess the Correction-for-chance property. We show this below.

E
[
Φ̂Guzman(Z)|H0

]
= 1−

1
d

k
d log(kd )

d∑
f=1

E [p̂f log p̂f |H0]
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= 1−
1
d

k
d log(kd )

d∑
f=1

E

[∑M
i=1 zi,f
M

log

∑M
i=1 zi,f
M

|H0

]
. (13)

Under the Null Model of Feature Selection H0, we have that zi,f follows a Bernoulli distri-
bution with parameter k

d . Since we assumed that the samples z1,f , ..., zM,f are independent

and identically distributed (i.i.d.), we have that
∑M

i=1 zi,f follows a Binomial distribution

with parameters M and k
d . Let Yf =

∑M
i=1 zi,f . Using this latter equation, we can calculate

the expected value term of Equation (13),

E

[∑M
i=1 zi,f
M

log

∑M
i=1 zi,f
M

|H0

]
= E

[
Yf
M

log
Yf
M
|H0

]
.

Let g : y 7−→ y
M log y

M , we have

E

[∑M
i=1 zi,f
M

log

∑M
i=1 zi,f
M

|H0

]
= E

[
Yf
M

log
Yf
M
|H0

]
= E [g(Yf )|H0] . (14)

Since g is a convex function13 of y on the interval (0, 1], we can use Jensen’s inequality,
which gives

E [g(Yf )|H0] ≥ g (E [Yf |H0])⇒ E [g(Yf )|H0] ≥ g
(
M
k

d

)
⇒ E [g(Yf )|H0] ≥ k

d
log

k

d

⇒ 1

d

d∑
f=1

E [g(Yf )|H0] ≥ k

d
log

k

d
⇒

1
d

k
d log(kd )

d∑
f=1

E [g(Yf )|H0] ≥ 1

⇒
1
d

k
d log(kd )

d∑
f=1

E [g(Yf )|H0] ≤ −1⇒ 1−
1
d

k
d log(kd )

d∑
f=1

E [g(Yf )|H0] ≤ 0

⇒ 1− E

 1
d

k
d log(kd )

d∑
f=1

g(Yf )|H0

 ≤ 0.

As shown by Equations (13) and (14), the left-hand-side term is equal to E
[
Φ̂Guzman(Z)|H0

]
,

therefore we get E
[
Φ̂Guzman(Z)|H0

]
≤ 0. Since we know that Φ̂Guzman(Z) is a positive

quantity, this gives us that E
[
Φ̂Guzman(Z)|H0

]
= 0.

For the Relative Weighted Consistency CWrel, using Equation (8), the result of Theorem
3 and by linearity of the expectation, we get

E
[
Φ̂CWrel

(Z)|H0

]
=
−1
d
M−1
M

∑d
f=1 E

[
s2
f |H0

]
+ k̄

d

(
1− k̄

d

)
− D

M2d

(
1− D

d

)
k̄
d

(
1− k̄

d

)
− D

M2d

(
1− D

d

)
+ H2

M2d
− H

Md

13. Indeed, its second derivative g′′(y) = 1
y ln a

where a is the logarithm base used is non-negative for
y ∈ (0, 1]. Therefore g is convex on that interval.

48



On the Stability of Feature Selection Algorithms

=
−1
d
M−1
M

∑d
f=1

k̄
d

(
1− k̄

d

)
+ k̄

d

(
1− k̄

d

)
− D

M2d

(
1− D

d

)
k̄
d

(
1− k̄

d

)
− D

M2d

(
1− D

d

)
+ H2

M2d
− H

Md

=

1
M

k̄
d

(
1− k̄

d

)
− D

M2d

(
1− D

d

)
k̄
d

(
1− k̄

d

)
− D

M2d

(
1− D

d

)
+ H2

M2d
− H

Md

.

Since H = (Mk̄) mod M , H is such that Mk̄ = bk̄cM + H. Therefore H = M(k̄ − bk̄c).
Replacing in the previous equation, we get

E
[
Φ̂CWrel

(Z)|H0

]
=

1
M

k̄
d

(
1− k̄

d

)
− D

M2d

(
1− D

d

)
k̄
d

(
1− k̄

d

)
− D

M2d

(
1− D

d

)
+ (k̄−bk̄c)2

d − k̄−bk̄c
d

,

which is not constant. Nevertheless, when bk̄c = k̄, we have E
[
Φ̂CWrel

(Z)|H0

]
−−−−→
M→∞

0 and

therefore the relative weighted consistency CWrel is asymptotically corrected for chance.
This is a result we expect since when the number of selected features is constant, this mea-
sure is asymptotically equivalent to our proposed measure (c.f. Theorem 5).

For Lausser’s Measure, using Equation (12), we have

E
[
Φ̂Lausser(Z)|H0

]
= E

1

k

d∑
f=1

p̂2
f |H0

 = −1

k

d∑
f=1

E
[
p̂f − p̂2

f − p̂f |H0

]
= −1

k

d∑
f=1

E [p̂f (1− p̂f )|H0] +
1

k

d∑
f=1

E [p̂f |H0]

= −1

k

M − 1

M

d∑
f=1

E
[

M

M − 1
p̂f (1− p̂f )|H0

]
+

1

k

d∑
f=1

pf

= −1

k

M − 1

M

d∑
f=1

pf (1− pf ) +
1

k

d∑
f=1

pf .

As shown earlier, E [p̂f |H0] = k
d , therefore

E
[
Φ̂Lausser(Z)|H0

]
= −M − 1

M

(
1− k

d

)
+ 1 =

1

M
+
M − 1

M

k

d
,

which is not constant. Therefore, Lausser’s measure does not have this property.

Appendix D. Proof of the Lower Bound of the Proposed Measure

In this section, we prove the lower bound of the proposed stability measure given in Defi-
nition 4. To do so, we first prove the lemma below that will be used later on.

Lemma 10 1
d2

∑
f<f ′(p̂f − p̂f ′)2 = 1

d

∑d
f=1 p̂

2
f −

(
1
d

∑d
f=1 p̂f

)2
.
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Proof.
Starting from the right-hand term, we get

1

d

d∑
f=1

p̂2
f −

1

d

d∑
f=1

p̂f

2

=

1

d

d∑
f=1

p̂2
f

− 1

d2

d∑
f=1

d∑
f ′=1

p̂f p̂f ′ =
1

d2

d∑
f=1

dp̂2
f − p̂f

d∑
f ′=1

p̂f ′


=

1

d2

d∑
f=1

d∑
f ′=1

p̂f
(
p̂f − p̂f ′

)
.

Since the term (p̂f − p̂f ′) is equal to zero when f = f ′, by splitting the sum in two terms,
this is equal to

1

d2

d∑
f=1

f−1∑
f ′=1

p̂f
(
p̂f − p̂f ′

)
+

1

d2

d∑
f=1

d∑
f ′=f+1

p̂f
(
p̂f − p̂f ′

)
.

The left term
∑d

f=1

∑f−1
f ′=1 p̂f (p̂f − p̂f ′) is equal to

∑d
f=1

∑d
f ′=f+1−p̂f ′(p̂f − p̂f ′). Therefore

the previous equation becomes

1

d2

d∑
f=1

d∑
f ′=f+1

−p̂f ′
(
p̂f − p̂f ′

)
+

1

d2

d∑
f=1

d∑
f ′=f+1

p̂f
(
p̂f − p̂f ′

)
=

1

d2

d∑
f=1

d∑
f ′=f+1

(
−p̂f ′

(
p̂f − p̂f ′

)
+ p̂f

(
p̂f − p̂f ′

))
=

1

d2

d∑
f=1

d∑
f ′=f+1

(
p̂f − p̂f ′

)2
=

1

d2

∑
f<f ′

(
p̂f − p̂f ′

)2
.

Since a sum of squares is always positive, using this lemma we have that

1

d2

∑
f<f ′

(p̂f − p̂f ′)2 ≥ 0

⇒ 1

d

d∑
f=1

p̂2
f −

1

d

d∑
f=1

p̂f

2

≥ 0

⇒ 1

d

d∑
f=1

p̂2
f −

(
k̄

d

)2

≥ 0

⇒ 1

d

d∑
f=1

p̂2
f ≥

(
k̄

d

)2

⇒ 1

d

d∑
f=1

p̂2
f −

1

d

d∑
f=1

p̂f ≥
(
k̄

d

)2

− 1

d

d∑
f=1

p̂f
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⇒ −1

d

d∑
f=1

p̂f (1− p̂f ) ≥
(
k̄

d

)2

− k̄

d

⇒ −1

d

d∑
f=1

p̂f (1− p̂f ) ≥ − k̄
d

(
1− k̄

d

)

⇒
1
d

∑d
f=1 p̂f (1− p̂f )

k̄
d

(
1− k̄

d

) ≤ 1

⇒ 1−
1
d

M
M−1

∑d
f=1 p̂f (1− p̂f )

k̄
d

(
1− k̄

d

) ≥ 1− M

M − 1

⇒ Φ̂(Z) ≥ − 1

M − 1
.

Hence, Φ̂(Z) is lower bounded by −1 (as M ≥ 2), but asymptotically bounded by 0.
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ment based on the jensen-shannon divergence. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML/PKDD), pages 597–612. 2011.

Kilem Li Gwet. Variance estimation of nominal-scale inter-rater reliability with random
selection of raters. Psychometrika, 73(3):407, 2008.

Yue Han and Lei Yu. A variance reduction framework for stable feature selection. Statistical
Analysis and Data Mining, 5(5):428–445, 2012.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference and Prediction. Springer, 2nd edition, 2009.

Giuseppe Jurman, Stefano Merler, Annalisa Barla, Silvano Paoli, Antonio Galea, and Ce-
sare Furlanello. Algebraic stability indicators for ranked lists in molecular profiling.
Bioinformatics, 24(2):258–64, 2008.

Alexandros Kalousis, Julien Prados, and Melanie Hilario. Stability of feature selection
algorithms. In IEEE International Conference on Data Mining (ICDM’05), 2005.

Alexandros Kalousis, Julien Prados, and Melanie Hilario. Stability of feature selection
algorithms: a study on high-dimensional spaces. Knowledge and Information Systems,
12(1):95–116, 2007.

52



On the Stability of Feature Selection Algorithms

Iman Kamkar, Sunil Kumar Gupta, Dinh Phung, and Svetha Venkatesh. Stable feature
selection with support vector machines. In Australasian Joint Conference on Artificial
Intelligence (AI 2015), volume 9457 of LNCS, pages 298–308, 2015.
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