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Abstract
Feature engineering is the task of improving pre-
dictive modelling performance on a dataset by
transforming its feature space. Existing ap-
proaches to automate this process rely on ei-
ther transformed feature space exploration through
evaluation-guided search, or explicit expansion of
datasets with all transformed features followed by
feature selection. Such approaches incur high com-
putational costs in runtime and/or memory. We
present a novel technique, called Learning Feature
Engineering (LFE), for automating feature engi-
neering in classification tasks. LFE is based on
learning the effectiveness of applying a transfor-
mation (e.g., arithmetic or aggregate operators) on
numerical features, from past feature engineering
experiences. Given a new dataset, LFE recom-
mends a set of useful transformations to be applied
on features without relying on model evaluation or
explicit feature expansion and selection. Using a
collection of datasets, we train a set of neural net-
works, which aim at predicting the transformation
that impacts classification performance positively.
Our empirical results show that LFE outperforms
other feature engineering approaches for an over-
whelming majority (89%) of the datasets from var-
ious sources while incurring a substantially lower
computational cost.

1 Introduction
Feature engineering is a central task in data preparation for
machine learning. It is the practice of constructing suitable
features from given features that lead to improved predictive
performance. Feature engineering involves the application
of transformation functions such as arithmetic and aggregate
operators on given features to generate new ones. Transfor-
mations help scale a feature or convert a non-linear relation
between a feature and a target class into a linear relation,
which is easier to learn.
Feature engineering is usually conducted by a data scien-

tist relying on her domain expertise and iterative trial and
error and model evaluation. To perform automated fea-
ture engineering, some existing approaches adopt guided-

search in feature space using heuristic feature quality mea-
sures (such as information gain) and other surrogate mea-
sures of performance [Markovitch and Rosenstein, 2002; Fan
et al., 2010]. Others perform greedy feature construction and
selection based on model evaluation [Dor and Reich, 2012;
Khurana et al., 2016]. Kanter et al. proposed the Data Sci-
ence Machine (DSM) which considers feature engineering
problem as feature selection on the space of novel features.
DSM relies on exhaustively enumerating all possible features
that can be constructed from a dataset, given sequences gen-
erated from a set of transformations, then performing feature
selection on the augmented dataset [Kanter and Veeramacha-
neni, 2015]. Evaluation-based and exhaustive feature enu-
meration and selection approaches result in high time and
memory cost and may lead to overfitting due to brute-force
generation of features. Moreover, although deep neural net-
works (DNN) allow for useful meta-features to be learned au-
tomatically [Bengio et al., 2013], the learned features are not
always interpretable and DNNs are not effective learners in
various application domains.
In this paper, we propose LFE (Learning Feature Engi-

neering), a novel meta-learning approach to automatically
perform interpretable feature engineering for classification,
based on learning from past feature engineering experiences.
By generalizing the impact of different transformations on the
performance of a large number of datasets, LFE learns useful
patterns between features, transforms and target that improve
learning accuracy. We show that generalizing such patterns
across thousands of features from hundreds of datasets can
be used to successfully predict suitable transformations for
features in new datasets without actually applying the trans-
formations, performing model building and validation tasks,
that are time consuming. LFE takes as input a dataset and
recommends a set of paradigms for constructing new useful
features. Each paradigm consists of a transformation and an
ordered list of features on which the transformation is suit-
able.
At the core of LFE, there is a set of Multi-Layer Percep-

tron (MLP) classifiers, each corresponding to a transforma-
tion. Given a set of features and class labels, the classifier
predicts whether the transformation can derive a more useful
feature than the input features. LFE considers the notion of
feature and class relevance in the context of a transformation
as the measure of the usefulness of a pattern of feature value
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and class label distributions, and transformation.
Different datasets contain different feature sizes and differ-

ent value ranges. One key challenge in generalizing across
different datasets is to convert feature values and their class
labels to a fixed size feature vector representation that can
be fed into LFE classifiers. To characterize datasets, hand-
crafted meta-features, fixed-size stratified sampling, neural
networks and hashing methods have been used for different
tasks [Michie et al., 1994; Kalousis, 2002; Feurer et al., 2015;
Weinberger et al., 2009]. However, these representations
do not directly capture the correlation between feature val-
ues and class labels. To capture such correlations, LFE con-
structs a stack of fixed-size representations of feature values
per target class. We use Quantile Data Sketch to represent
feature values of each class. Quantile has been used as a
fixed-size space representation and achieves reasonably ac-
curate approximation to the distribution function induced by
the data being sketched [Greenwald and Khanna, 2001].
LFE presents a computationally efficient and effective al-

ternative to other automated feature engineering approaches
by recommending suitable transformations for features in a
dataset. To showcase the capabilities of LFE, we trained LFE
on 85K features, extracted from 900 datasets, for 10 unary
transformations and 122K feature pairs for 4 binary trans-
formations, for two models: Random Forest and Logistic
Regression. The transformations are listed in Table 1. We
empirically compare LFE with a suite of feature engineering
approaches proposed in the literature or applied in practice
(such as the Data Science Machine, evaluation-based, ran-
dom selection of transformations and always applying the
most popular transformation in the training data) on a sub-
set of 50 datasets from UCI repository [Lichman, 2013],
OpenML [Vanschoren et al., 2014] and other sources. Our
experiments show that, of the datasets that demonstrated any
improvement through feature engineering, LFE was the most
effective in 89% of the cases. As shown in Figure 2, simi-
lar results were observed for the LFE trained with Logistic
Regression. Moreover, LFE runs in significantly lesser time
compared to the other approaches. This also enables interac-
tions with a practitioner since it recommends transformations
on features in a short amount of time.

2 Related Work
The FICUS algorithm [Markovitch and Rosenstein, 2002]
takes as input a dataset and a set of transformations, and per-
forms a beam search over the space of possible features. FI-
CUS’s search for better features is guided by heuristic mea-
sures based on information gain in a decision tree, and other
surrogate measures of performance. The more recent FC-
Tree [Fan et al., 2010] also uses a decision tree to partition the
data using original or constructed features as splitting points.
The FEADIS algorithm of [Dor and Reich, 2012] relies on
a combination of random feature generation and feature se-
lection. FEADIS adds constructed features greedily, and as
such requires many expensive performance evaluations. The
Deep Feature Synthesis component of Data Science Machine
(DSM) [Kanter and Veeramachaneni, 2015] relies on exhaus-
tively enumerating all possible new features, then performing

feature selection over the augmented dataset. Cognito [Khu-
rana et al., 2016] recommends a series of transformations
based on a greedy, hierarchical heuristic search. Cognito and
DSM focus on sequences of feature transformations, which
is outside the scope of this paper. In contrast to these ap-
proaches, we do not require expensive classifier evaluations
to measure the impact of a transformation. ExploreKit [Katz
et al., 2016] also generates all possible candidate features,
but uses a learned ranking function to sort them. ExploreKit
requires generating all possible candidate features when en-
gineering features for a new (test) dataset and as such, results
reported for ExploreKit are with a time limit of three days
per dataset. In contrast, LFE can generate effective features
within seconds, on average.
Several machine learning methods perform feature extrac-

tion or learning indirectly. While they do not explicitly work
on input features and transformations, they generate new fea-
tures as means to solving another problem [Storcheus et al.,
2015]. Methods of that type include dimensionality reduc-
tion, kernel methods and deep learning. Kernel algorithms
such as SVM [Shawe-Taylor and Cristianini, 2004] can be
seen as embedded methods, where the learning and the (im-
plicit) feature generation are performed jointly. This is in
contrast to our setting, where feature engineering is a pre-
processing step.
Deep neural networks learn useful features automati-

cally [Bengio et al., 2013] and have shown remarkable suc-
cesses on video, image and speech data. However, in some
domains feature engineering is still required. Moreover, fea-
tures derived by neural networks are often not interpretable
which is an important factor in certain application domains
such as healthcare [Che et al., 2015].

3 Automated Feature Engineering Problem
Consider a dataset, D, with features, F = {f1, . . . , fn}, and
a target class, , a set of transformations, T = {T1, . . . , Tm},
and a classification task, L. The feature engineering problem
is to find q best paradigms for constructing new features such
that appending the new features toD maximizes the accuracy
of L. Each paradigm consists of a candidate transformation
Tc 2 T of arity r, an ordered list of features [fi, . . . , fi+r�1]

and a usefulness score.
For a dataset with n features and with u unary transfor-

mations, O(u ⇥ n) new features can be constructed. With
b binary transformations, there are O(b ⇥ Pn

2 ) new possi-
ble features, where Pn

2 is the 2-permutation of n features.
Given a fixed set of transformations, the number of new fea-
tures and their combinations to explore, for an exact solution,
grows exponentially. Hence, we make the case that a mere
enumeration and trial by model training and testing is not a
computationally practical option, and a scalable solution to
the problem must avoid this computational bottleneck. LFE
reduces the complexity of feature space exploration by pro-
viding an efficient approach for finding a particularly “good”
transformation for a given set of features. Therefore, given n
features, for unary and binary transformations, LFE performs,
respectively, O(n) and O(Pn

2 ) transformation predictions.
In order to assess the relative impact of adding new features
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across different techniques, we add as many new features as
those originally in the data. For unary transformations, LFE
predicts the most suitable transformation for each feature.
For binary and higher arity transformations, LFE considers
a random sample of all combinations of features, finds the
paradigm for each combination and selects top-k useful ones.
In the following section, we describe how LFE learns and
predicts useful transformations for features.

4 Transformation Recommendation
LFE models the problem of predicting a useful r-ary transfor-
mation Tc 2 Tr, (Tr is the set of r-ary transformations in T ),
for a given list of features [f1, . . . , fr] as a multi-class clas-
sification problem, where the input is a representation of fea-
tures,R[f1,...,fr], and output classes are transformations in Tr.
LFE takes a one-vs-rest approach [Rifkin and Klautau, 2004].
Each transformation is modelled as a Multi-Layer Perceptron
(MLP) binary classifier with real-valued confidence scores as
output. Recommending an r-ary transformation for r fea-
tures involves applying all |Tr| MLPs on R[f1,...,fr]. If the
highest confidence score obtained from classifiers is above a
given threshold, LFE recommends the corresponding trans-
formation to be applied on feature f . Let gk(R[f1,...,fr]) be
the confidence score of the MLP corresponding to transfor-
mation Tk, and � is the threshold for confidence scores which
we determined empirically. LFE recommends the transfor-
mation Tc, for features [f1, . . . , fr], as follows:

c = arg max

k
gk(R[f1,...,fr])

recommend :

⇢
Tc, if gc(R[f1,...,fr]) > �

none, otherwise
(1)

In the following sections, we describe how numerical features
are represented to be the input of transformation MLPs. Next,
we explain the process of collecting past feature engineering
knowledge as training samples to train MLPs.

4.1 Feature-Class Representation
Transformations are used to reveal and improve significant
correlation or discriminative information between features
and class labels. The more pronounced this correlation, the
higher the chance that a model can achieve a better predic-
tive performance. Each LFE classifier learns the patterns of
feature-class distributions for which the corresponding trans-
formation has been effective in improving feature-class cor-
relation. LFE represents feature f in a dataset with k classes
as follows:

Rf =

h
Q

(1)
f ;Q

(2)
f ; . . . ;Q

(k)
f

i
(2)

where Q(i)
f is a fixed-sized representation of values in f that

are associated with class i. We call this representation Quan-
tile Sketch Array. Next, we describe how feature values asso-
ciated to class i are translated into representation Q(i)

f , which
is meant to capture the distribution of feature values.
Neural networks have been successful in learning repre-

sentations for image and speech data [Bengio et al., 2013].
Others have proposed solutions for estimating a Probability

Distribution Function (PDF) in an n-dimensional space [Gar-
rido and Juste, 1998]. However, it is not clear how existing
representation learning and PDF learning approaches may be
applied in the context of raw numerical data. The main chal-
lenges is the high variability in the size and the range of fea-
ture values (e.g., from 10 to millions). In our setting, features
are data points represented with various numbers of dimen-
sions (number of distinct feature values). Hence, Random
Projection [Bingham and Mannila, 2001] for dimensionality
reduction is not applicable. Although Recurrent Neural Net-
works can deal with varying input size, we aim at determin-
ing a fixed-size representation that captures the correlation
between features and target classes.
Previous approaches have used hand-crafted meta-features,

including information-theoretic and statistical meta-features,
to represent datasets [Michie et al., 1994; Kalousis, 2002;
Feurer et al., 2015]. Such meta-features aim at modelling
the distribution of values in datasets. Performing fixed-size
sampling of feature values is another approach for represent-
ing distributions. Samples extracted from features and classes
are required to reflect the distribution of values in both fea-
ture and target classes. While stratified sampling solves the
issue for one feature, it becomes more complex for multiple
features with high correlation [Skinner et al., 1994]. Feature
hashing has been used to represent features of type “string”
as feature vectors [Weinberger et al., 2009]. Although fea-
ture hashing can be generalized for numerical values, it is not
straightforward to choose distance-preserving hash functions
that map values within a small range to the same hash value.
In Section 5, we empirically show how LFE transformation
classifiers perform using each of representations described
above.
Quantile Sketch Array (QSA) uses quantile data

sketch [Wang et al., 2013] to represent feature values
associated with a class label. QSA is a non-parametric
representation that enables characterizing the approximate
Probability Distribution Function of values. QSA is closely
related to the familiar concept of histogram, where data is
summarized into a small number of buckets. Naumann et
al. used quantile representation for numerical features to
perform feature classification [Naumann et al., 2002]. We
apply the exact brute-force approach to compute quantile
sketch for numerical values [Wang et al., 2013], described as
follows.
Let Vk be the bag of values in feature f that are for the

training data points with the label ck and Q
(i)
f is the quan-

tile sketch of Vk. First, we scale these values to a predefined
range [lb, ub]. Generating Q

(i)
f involves bucketing all values

in Vk into a set of bins. Given a fixed number of bins, r,
the range [lb, ub] is partitioned into r disjoint bins of uni-
form width w =

ub�lb
r . Assume, the range [lb, ub] is par-

titioned into bins {b0, . . . , br�1}, where the bin bj is a range
[lb + j ⇤ w, lb + (j + 1) ⇤ w). Function B(vl) = bj asso-
ciates the value vl in Vk to the bin bj . Function P (bj) re-
turns the number of feature values, that are bucketed in bj .
Finally, I(bj) =

P (bj)P
0m<r P (bm) is the normalized value of

P (bj) across all bins.
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Figure 1: An example of feature representation using Quantile
Sketch Array. The feature f1’s values are binned into 10 equi-width
bins, separately for classes �1 and +1.

To illustrate, Figure 1 shows an example of the representa-
tion of a feature. Note that this representation has certain
behaviours. For example, for feature values that are perfectly
separated in terms of the class label the representation ends
up being very similar regardless of the scale of feature values.
In this particular case there is also no need for any transfor-
mation since values are already separated. We decide QSA
parameters (number of bins and scaling range) based on the
performance of classifiers through empirical observations.

4.2 Training
To generate training samples for transformation MLP clas-
sifiers, LFE considers numerical features in classification
datasets across various repositories. Each classifier is trained
with the samples for which the corresponding transformation
has been found useful as positive samples and all other sam-
ples as negative. In order to decide whether a transformation
for a set of features leads to improvement, we evaluate a se-
lected model, L, on the original features and the target class
as well as the constructed feature by itself and the target class.
If the constructed feature shows performance improvement
beyond a threshold, ✓, the input features together with their
class labels are considered as a positive training sample for
the transformation classifier.
A sample generated from feature f , in a dataset with

k classes, for transformation t is translated into Rf =

[Q
(1)
f ; . . . ;Q

(k)
f ]. Assuming b bins are used for each quan-

tile data sketch, Rf is a vector of size k ⇥ b. Then, Rf is fed
into the MLP corresponding to t. Assume the corresponding
MLP to the unary transformation t has one hidden layer with
h units. The probability of t being a useful transformation or
not for feature f in a dataset is computed as:

[pt is useful(f), pt is not useful(f)] =

�2(b(2)
+W(2)

(�1(b(1)
+W(1)

[Q
(1)
f ; . . . ;Q

(k)
f ])))

(3)
where, W(1) and W(2) are weight matrices, b(1) and b(1)

are bias vectors, and �1 and �2 are softmaxe and rectified
linear unit (ReLU) functions, respectively [Nair and Hinton,
2010]. We use Stochastic Gradient Descent with minibatches
to train transformation MLPs. In order to prevent overfitting,
we apply regularization and drop-out [Srivastava et al., 2014].
The generated training samples are dependent on model type.
In other words, while there may be overlaps in the suggested
feature engineering paradigms across models, the optimal use
of LFE for a specific model comes from using that same
model while training LFE. In Section 5, we show that LFE
is robust in terms of the choice of classification model.

5 Experimental Results
We evaluate three aspects of LFE: (1) the impact of using
Quantile Sketch Array representation on the performance of
transformation classifiers compared to other representations,
(2) the capability of LFE in recommending useful transfor-
mations, (3) the benefit of using LFE to perform feature engi-
neering compared to other alternatives, in prediction accuracy
and time taken. We implemented LFE transformation clas-
sifiers and the meta-feature learner (auto-encoder) in Tensor-
Flow. Transformation computation and model training were
implemented using Scikit-learn. To showcase the capabili-
ties of LFE, we considered the following ten unary and four
binary transformations, respectively: log, square-root (both
applied on the absolute of values), frequency (count of how
often a value occurs), square, round, tanh, sigmoid, isotonic
regression, zscore, normalization (mapping to [-1, 1]), sum,
subtraction, multiplication and division. In order to avoid
data leakage, we apply transformations on train and test folds
separately.
Without the loss of generality, we focus on binary classifi-

cation for the purpose of these experiments. We collected 900
classification datasets from the OpenML and UCI reposito-
ries to train transformation classifiers. A subset of 50 datasets
were reserved for testing and were not used for the purpose of
training. In order to better utilize the datasets, we converted
the multi-class problems into one-vs-all binary classification
problems. Training samples were generated for Random For-
est and Logistic Regression using 10-fold cross validation and
the performance improvement threshold, ✓, of 1%. Differ-
ent improvement thresholds result in collecting variable num-
ber of training samples. Since the distribution of collected
samples for transformations is not uniform, we decided on
the threshold upon due empirical exploration. We generated
approximately 84.5K training samples for unary transforma-
tion and 122K for binary transformations. Table 1 reports
the statistics of positive training samples generated from all
datasets. Frequency and multiplication are two transforma-
tions that incur performance improvement for the majority of
features. All transformation classifiers are MLPs with one
hidden layer. We tuned the number of hidden units to opti-
mize the F-score for each classifier, and they vary from 400
to 500. The average time to train transformation classifiers
offline was 6 hours.

5.1 Feature Representation
We evaluate the efficacy of Quantile Sketch Array (QSA)
through the performance of LFE consisting of QSA compared
to other representations, as listed in Table 2. These represen-
tations are listed in Table 2.
For hand-crafted meta-feature representation, we consider

the following meta-features used in the literature: first 30
moments of feature values, median, standard deviation, min,
max, number of values and its log. For sampling represen-
tation, we obtain 250 stratified random samples per class.
We also perform meta-feature learning by training an auto-
encoder on all features in our corpus. The input and out-
put of the auto-encoder are the feature hashing representa-
tion [Weinberger et al., 2009] of features with 200 hash val-
ues per class. The auto-encoder consists of a two-layer en-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2532



Transformation log sqrt square freq round tanh sigmoid isotonic-reg zscore normalize sum subt mult div
#Positive Training Samples 6710 6293 5488 73919 15855 70829 70529 624 664 31019 28492 36296 37086 19020
Classifier Performance 0.95 0.96 0.97 0.77 0.92 0.92 0.80 0.98 0.97 0.91 0.98 0.99 0.97 0.98

Table 1: Statistics of Training Samples and F1 Score of LFE Classifiers for 10-fold Cross Validation of Random Forest.

Hand-crafted Stratified Meta-feature Quantile
Meta-features Sampling Learning Sketch Array
0.5558 0.5173 0.3256 0.9129

Table 2: F1 Score of Transformation Classifiers.

coder and a two-layer decoder, which are symmetric and each
has a layer of 100 units connected to another layer of 75 units.
For a hashed input feature, we consider the output of the en-
coder component of a trained auto-encoder as learned meta-
features of the feature. Finally, for Quantile Sketch Array, we
consider scaling range of [-10, 10] and quantile data sketch
size of 200 bins.
We use the same set of samples for training classifiers of

different representations and tuned the MLPs to have their
best possible configuration. In order to overcome the im-
balance data classification problem, as shown in Table 1, we
oversample the minority class samples to have balanced nega-
tive and positive samples during the training phase. The aver-
age 10-fold cross validation F1-score of a subset of classifiers
is reported in Table 2 as a proxy of the benefit of representa-
tions. There is a clear distinction in terms of predictive per-
formance and employed representation. The poorest results
are obtained by learned meta-features, possibly since fea-
ture values belong to various ranges and hashing representa-
tion is not distance preserving, therefore, it is challenging for
the auto-encoder to learn useful meta-features. Hand-crafted
meta-features perform better than sampling and learned meta-
features, however, Quantile Sketch Array outperforms other
representations by a significant margin (35.7%).

5.2 Transformation Classifier
To evaluate the predictive power of each classifier, we trained
classifiers corresponding to unary and binary transformations,
using 10-fold cross validation on all training samples. Dur-
ing the test phase, the corresponding transformation of each
classifier is applied on one or a pair of feature(s) and the F1
score of the model based on the transformed feature only is
evaluated. The F1-Score of classifiers using Random Forest
and improvement threshold of 1%, are shown in Table 1. We
considered 0/1 loss evaluation. Table 1 demonstrates the high
predictive capability of LFE transformation classifiers. As
baseline, a random transformation recommender converged
to F1 score of 0.50 for all transformation classifiers.

5.3 Transformation Recommender
To showcase the benefits of LFE in recommending useful fea-
tures, we compare the predictive performance of test datasets
augmented with features engineered by LFE and features en-
gineered by the following approaches.
• Random, which iterates for a given r runs and in each run
recommends a random or no transformation for feature(s).
The performance of the dataset augmented with features
constructed by randomly selected transformations is evalu-

ated in each run and the transformations in the run with the
highest predictive performance are recommended.

• Majority, which always recommends the single most ef-
fective transformation in the training samples (i.e. fre-
quency for unary and multiplication for binary transforma-
tions).

• Brute-force, inspired by Feature Synthesis component
of Data Science Machine [Kanter and Veeramachaneni,
2015], enumerates the whole feature space by applying all
transformations to all features and performs feature selec-
tion on the augmented dataset.

• Model evaluation-based, which chooses the useful trans-
formation for a feature by model evaluation on each con-
structed feature by each transformation. Having t unary
transformations, this approach performs t model training
runs for each feature.

To compare LFE with other feature engineering approaches,
we consider 50 binary classification datasets. The detailed
statistics of 23 of test datasets are shown in Table 3. Test
datasets have a diverse range in number of features (2 to
10,936) and data points (57 to 140,707). All experimental
evaluations are based on 10-fold cross validation on a Ran-
dom Forest model. Since Quantile Sketch Array considers
both feature values and class labels, in order to avoid data
leakage problem, we do not consider the entire dataset when
LFE computes the recommendations. For experiments with
unary transformations for each fold, we ask LFE to recom-
mend at most one transformation for each feature in the train
data fold. Next, recommended transformations are applied
on the corresponding features of the test data fold and added
as new features to the dataset. To only analyze the capabil-
ity of feature engineering approaches, we do not perform any
feature selection, except for brute-force approach to which
feature selection is essential.
Table 3 compares the predictive performance and execu-

tion time of LFE to other feature engineering approaches on
test datasets. All columns in this table, except the last, re-
port results when using unary transformations. Since 50%
of datasets time out for evaluation-based approach and 62%
for brute-force approach, we only report the performance of
LFE for binary transformations. All reported times in Table 3
include preparing data, recommending transformations, ap-
plying transformations and model training. Since the cost of
training classifiers is one-time and offline, we do not consider
it while comparing the runtime performance. LFE consis-
tently outperforms all approaches on most datasets at a small
cost of execution time. We argue that it is effective to spend
certain effort offline in order to provide prompt answers at
runtime. No feature engineering approach results in improve-
ment of the performance of three datasets sonar and spam-
base and twitter-absolute. The evaluation-based approach on
AP-omentum-lung, convex, gisette and higgs-boson timed out
due to the excessive number of model training calls. Since the
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Dataset #Numerical #Data Base Majority Brute- Random Evaluation unary binary
Features Points Dataset Force (10 runs) based LFE LFE

AP-omentum-lung 10936 203 0.883 0.915 0.925 0.908 - 0.929 0.904
AP-omentum-ovary 10936 275 0.724 0.775 0.801 0.745 0.788 0.811 0.775
autos 48 4562 0.946 0.95 0.944 0.929 0.954 0.96 0.949
balance-scale 8 369 0.884 0.916 0.892 0.881 0.882 0.919 0.884
convex 784 50000 0.82 0.5 0.913 0.5 - 0.819 0.821
credit-a 6 690 0.753 0.647 0.521 0.643 0.748 0.771 0.771
dbworld-bodies 2 100 0.93 0.939 0.927 0.909 0.921 0.961 0.923
diabetes 8 768 0.745 0.694 0.737 0.719 0.731 0.762 0.749
fertility 9 100 0.854 0.872 0.861 0.832 0.833 0.873 0.861
gisette 5000 2100 0.941 0.601 0.741 0.855 - 0.942 0.933
hepatitis 6 155 0.747 0.736 0.753 0.727 0.814 0.807 0.831
higgs-boson-subset 28 50000 0.676 0.584 0.661 0.663 - 0.68 0.677
ionosphere 34 351 0.931 0.918 0.912 0.907 0.913 0.932 0.925
labor 8 57 0.856 0.827 0.855 0.806 0.862 0.896 0.896
lymph 10936 138 0.673 0.664 0.534 0.666 0.727 0.757 0.719
madelon 500 780 0.612 0.549 0.585 0.551 0.545 0.617 0.615
megawatt1 37 253 0.873 0.874 0.882 0.869 0.877 0.894 0.885
pima-indians-subset 8 768 0.74 0.687 0.751 0.726 0.735 0.745 0.76
secom 590 470 0.917 0.917 0.913 0.915 0.915 0.918 0.915
sonar 60 208 0.808 0.763 0.468 0.462 0.806 0.801 0.783
spambase 57 4601 0.948 0.737 0.39 0.413 0.948 0.947 0.947
spectf-heart 43 80 0.941 0.955 0.881 0.942 0.955 0.955 0.956
twitter-absolute 77 140707 0.964 0.866 0.946 0.958 0.963 0.964 0.964
Feature Engineering and Model geomean 2.66 11.06 48.54 69.57 403.81 18.28 44.58
Evaluation Time (seconds) average 19.23 1219.34 13723.51 2041.52 10508.75 97.90 188.17

Table 3: Statistics of Datasets and F1 Score of LFE and Other Feature Engineering Approaches with 10-fold Cross Validation of Random
Forest. The best performing approach is shown in bold for each dataset. The improving approaches are underlined.

evaluation-based approach requires model training for each
combination of feature and transformation, the evaluation-
based approach is only applicable to datasets with small num-
ber of features and data points.
To broaden the scope of experiments, we performed fea-

ture engineering using the same approaches and setting of
Table 3 on 50 test datasets. Figure 2 shows the percentage
of test datasets whose predictive performance improved by
each feature engineering approach. For Random Forest, we
observed that for 24% of test datasets, none of the considered
approaches, including LFE, can improve classification per-
formance. In all remaining datasets, LFE always improves
the predictive performance and for 89% of such datasets LFE
generates features that results in the highest classification per-
formance. For the remaining 11% of datasets, the higher per-
formance is achieved by other approaches at higher compu-
tational cost than LFE. To investigate the robustness of LFE
with respect to the model, we performed the experiments for
Logistic Regression and similar results were observed. While
LFE is a one shot approach it already achieves an average
improvement of more than 2% in F1 score and a maximal
improvement of 13% across the 50 test data sets.

6 Conclusion and Future Work
In this paper, we present a novel framework called LFE to
perform automated feature engineering by learning patterns
between feature characteristics, class distributions, and use-
ful transformations, from historical data. The cornerstone of
our framework is a novel feature representation, called Quan-
tile Sketch Array (QSA), that reduces any variable sized fea-

Figure 2: The percentage of datasets, from a sample of 50, for which
a feature engineering approach results in performance improvement
(measured by F1 score of 10 fold cross validation for Random Forest
and Logistic Regression).

tures to a fixed size array, preserving its essential character-
istics. QSA enables LFE to learn and predict the ability of
a transform to improve the accuracy of a given dataset. Our
empirical evaluation demonstrates the efficacy and efficiency
of LFE in improving the predictive performance at low com-
putational costs for a variety of classification problems. We
plan to add more transformations, to design an iterative ver-
sion of LFE, and combine it with exploration-based methods
to achieve even more pronounced improvements. In addition,
we aim to use the family of Recurrent Neural Networks to
deal with both varying data set sizes and taking into account
relationships across multiple features within a dataset to im-
prove transformation recommendation.
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